cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218499 7th iteration of the hyperbinomial transform on the sequence of 1's.

This page as a plain text file.
%I A218499 #8 Oct 18 2013 15:14:09
%S A218499 1,8,78,911,12524,199403,3624706,74300269,1699264792,42964199279,
%T A218499 1191492782054,35994106307321,1177389200637028,41482632276082915,
%U A218499 1566911405137366450,63190697224460246477,2710704012199936430000,123277690401078017104343,5925900498827152433216446
%N A218499 7th iteration of the hyperbinomial transform on the sequence of 1's.
%C A218499 See A088956 for the definition of the hyperbinomial transform.
%H A218499 Alois P. Heinz, <a href="/A218499/b218499.txt">Table of n, a(n) for n = 0..150</a>
%F A218499 E.g.f.: exp(x) * (-LambertW(-x)/x)^7.
%F A218499 a(n) = Sum_{j=0..n} 7 * (n-j+7)^(n-j-1) * C(n,j).
%F A218499 Hyperbinomial transform of A218498.
%F A218499 a(n) ~ 7*exp(7+exp(-1))*n^(n-1). - _Vaclav Kotesovec_, Oct 18 2013
%p A218499 a:= n-> add(7*(n-j+7)^(n-j-1)*binomial(n,j), j=0..n):
%p A218499 seq (a(n), n=0..20);
%t A218499 Table[Sum[7*(n-j+7)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 18 2013 *)
%Y A218499 Column k=7 of A144303.
%K A218499 nonn
%O A218499 0,2
%A A218499 _Alois P. Heinz_, Oct 30 2012