This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218499 #8 Oct 18 2013 15:14:09 %S A218499 1,8,78,911,12524,199403,3624706,74300269,1699264792,42964199279, %T A218499 1191492782054,35994106307321,1177389200637028,41482632276082915, %U A218499 1566911405137366450,63190697224460246477,2710704012199936430000,123277690401078017104343,5925900498827152433216446 %N A218499 7th iteration of the hyperbinomial transform on the sequence of 1's. %C A218499 See A088956 for the definition of the hyperbinomial transform. %H A218499 Alois P. Heinz, <a href="/A218499/b218499.txt">Table of n, a(n) for n = 0..150</a> %F A218499 E.g.f.: exp(x) * (-LambertW(-x)/x)^7. %F A218499 a(n) = Sum_{j=0..n} 7 * (n-j+7)^(n-j-1) * C(n,j). %F A218499 Hyperbinomial transform of A218498. %F A218499 a(n) ~ 7*exp(7+exp(-1))*n^(n-1). - _Vaclav Kotesovec_, Oct 18 2013 %p A218499 a:= n-> add(7*(n-j+7)^(n-j-1)*binomial(n,j), j=0..n): %p A218499 seq (a(n), n=0..20); %t A218499 Table[Sum[7*(n-j+7)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 18 2013 *) %Y A218499 Column k=7 of A144303. %K A218499 nonn %O A218499 0,2 %A A218499 _Alois P. Heinz_, Oct 30 2012