This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218504 #12 Mar 20 2016 11:37:40 %S A218504 1,1,3,9,40,200,1286,9002,74712,672408,6892312,75815432,925733216, %T A218504 12034531808,170656068480,2559841027200,41356302857344, %U A218504 703057148574848,12752569691858048,242298824145302912,4875886476833445888,102393616013502363648,2264106940756915715584 %N A218504 E.g.f.: Product_{n>=1} 1/(1 - tanh(x^n/n)). %H A218504 Vaclav Kotesovec, <a href="/A218504/b218504.txt">Table of n, a(n) for n = 0..410</a> %F A218504 E.g.f.: 1/(1-x) * Product_{n>=1} cosh(x^n/n); see A130268. %F A218504 a(n) ~ c * n!, where c = A249673 = Product_{k>=1} cosh(1/k) = 2.1164655365... . - _Vaclav Kotesovec_, Nov 03 2014 %e A218504 E.g.f.: A(x) = 1 + x + 3*x^2/2! + 9*x^3/3! + 40*x^4/4! + 200*x^5/5! +... %e A218504 where A(x) = 1/((1-tanh(x))*(1-tanh(x^2/2))*(1-tanh(x^3/3))*(1-tanh(x^4/4))*...) %e A218504 Let G(x) = Product_{n>=1} cosh(x^n/n) be the e.g.f. of A130268: %e A218504 G(x) = 1 + x^2/2! + 4*x^4/4! + 86*x^6/6! + 2696*x^8/8! + 168232*x^10/10! +... %e A218504 then e.g.f. A(x) = G(x)/(1-x). %t A218504 nn = 25; Range[0, nn]! * CoefficientList[Series[1/(1 - x)*Product[Cosh[x^k/k], {k, 1, nn}], {x, 0, nn}], x] (* _Vaclav Kotesovec_, Mar 20 2016 *) %o A218504 (PARI) {a(n)=n!*polcoeff(1/prod(k=1, n, (1-tanh(x^k/k+x*O(x^n)))), n)} %o A218504 for(n=0,30,print1(a(n),", ")) %Y A218504 Cf. A130263, A130268, A249673, A270597, A270598. %K A218504 nonn %O A218504 0,3 %A A218504 _Paul D. Hanna_, Oct 31 2012