cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218539 Numbers that are equal to the sum of the uniform platonic polyhedral (figurate) numbers (tetrahedral, cubic, octahedral, dodecahedral, or icosahedral) on each of their digits.

Original entry on oeis.org

0, 1, 20, 21, 24, 153, 240, 241, 289, 304, 324, 370, 371, 407, 440, 441, 593, 739, 2167, 2284, 2348, 2484, 2583, 2860, 2861, 3009, 3029, 3093, 3249, 4288, 5859, 6888, 7996, 9898
Offset: 1

Views

Author

Thomas S. Pedigo, Nov 01 2012

Keywords

Comments

153, 370, 371, and 407 are well known with regard to the cubic numbers.

Examples

			The octahedral numbers are represented by the formula, y(x)=(2x^3+x)/3; apply this formula to each of the digits in a(18)=739, i.e., y(7)=231, y(3)=19, y(9)=489; sum=739; the dodecahedral numbers are represented by the formula, y(x)=x(3x-1)(3x-2)/2; apply this formula to each of the digits in a(34)=9898, i.e., y(9)=2725, y(8)=2024; y(9)=2725, y(8)=2024; sum=9898.
		

Crossrefs