cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218540 Reduced third-order Patalan numbers.

Original entry on oeis.org

1, 1, 1, 5, 10, 66, 154, 1122, 2805, 21505, 55913, 442221, 1179256, 9524760, 25852920, 211993944, 582983346, 4835332458, 13431479050, 112400272050, 314720761740, 2652646420380, 7475639911980, 63380425340700, 179577871798650, 1530003467724498
Offset: 0

Views

Author

R. J. Mathar, Nov 01 2012

Keywords

Comments

Obtained by removing powers of 3 in a systematic manner from the Patalan numbers A025748.

Crossrefs

Programs

  • Maple
    A218540 := proc(n)
        option remember;
        if n <=2 then
            1;
        elif n = 3 then
            5 ;
        else
            (n-1)*(n-2)*(n+4)*procname(n-1)-3*(3*n-4)*(3*n-7)*(n+2)*procname(n-2)-3*(3*n-10)*(n+4)*(3*n-7)*procname(n-3) ;
            -%/n/(n+2)/(n-1) ;
        end if;
    end proc:
  • Mathematica
    a[n_] := 3^(2*n-2-Floor[n/2]) * Pochhammer[2/3, n-1]/n!; a[0] = 1; Array[a, 26, 0] (* Amiram Eldar, Aug 20 2025 *)

Formula

a(n) = A025748(n)/A108411(n).
D-finite with recurrence n*(n+2)*(n-1)*a(n) + (n-1)*(n-2)*(n+4)*a(n-1) - 3*(3*n-4)*(3*n-7)*(n+2)*a(n-2) - 3*(3*n-10)*(n+4)*(3*n-7)*a(n-3) = 0, n >= 4.
a(n) ~ 3^(2*n-2-floor(n/2)) / (Gamma(2/3) * n^(4/3)). - Amiram Eldar, Aug 20 2025