This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218570 #13 Sep 11 2017 02:36:07 %S A218570 1,1,3,3,7,8,14,18,28,34,51,63,86,108,144,175,229,278,351,425,529,630, %T A218570 775,919,1109,1309,1565,1827,2167,2518,2952,3414,3975,4563,5281,6036, %U A218570 6931,7889,9012,10200,11598,13078,14785,16613,18704,20925,23470,26174,29229 %N A218570 Number of partitions p of n such that max(p)-min(p) = 7. %H A218570 Alois P. Heinz, <a href="/A218570/b218570.txt">Table of n, a(n) for n = 9..1000</a> %H A218570 G. E. Andrews, M. Beck and N. Robbins, <a href="https://arxiv.org/abs/1406.3374">Partitions with fixed differences between largest and smallest parts</a>, arXiv:1406.3374 [math.NT], 2014. %F A218570 G.f.: Sum_{k>0} x^(2*k+7)/Product_{j=0..7} (1-x^(k+j)). %F A218570 a(n) = A097364(n,7) = A116685(n,7) = A194621(n,7) - A194621(n,6) = A218509(n) - A218508(n). %t A218570 terms = 49; offset = 9; max = terms + offset; s[k0_ /; k0 > 0] := Sum[x^(2*k + k0)/Product[ (1 - x^(k + j)), {j, 0, k0}], {k, 1, Ceiling[max/2]}] + O[x]^max // CoefficientList[#, x] &; Drop[s[7], offset] (* _Jean-François Alcover_, Sep 11 2017, after _Alois P. Heinz_ *) %K A218570 nonn %O A218570 9,3 %A A218570 _Alois P. Heinz_, Nov 02 2012