cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218577 Triangle read by rows: T(n,k) is the number of ascent sequences of length n with maximal element k-1.

This page as a plain text file.
%I A218577 #33 Nov 26 2018 17:12:49
%S A218577 1,1,1,1,3,1,1,7,6,1,1,15,25,11,1,1,31,90,74,20,1,1,63,301,402,209,37,
%T A218577 1,1,127,966,1951,1629,590,70,1,1,255,3025,8869,10839,6430,1685,135,1,
%U A218577 1,511,9330,38720,65720,56878,25313,4870,264,1
%N A218577 Triangle read by rows: T(n,k) is the number of ascent sequences of length n with maximal element k-1.
%C A218577 Row sums are A022493.
%C A218577 Second column is A000225 (2^n - 1).
%C A218577 Third column appears to be A000392 (Stirling numbers S(n,3)).
%C A218577 Second diagonal (from the right) appears to be A006127 (2^n + n).
%H A218577 Joerg Arndt and Alois P. Heinz, <a href="/A218577/b218577.txt">Rows n = 1..141, flattened</a> (first 15 rows from Joerg Arndt)
%H A218577 Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes, Sergey Kitaev, <a href="http://arxiv.org/abs/0806.0666">(2+2)-free posets, ascent sequences and pattern avoiding permutations</a>, arXiv:0806.0666 [math.CO], 2008-2009.
%H A218577 William Y. C. Chen, Alvin Y.L. Dai, Theodore Dokos, Tim Dwyer and Bruce E. Sagan, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i1p76">On 021-Avoiding Ascent Sequences, The Electronic Journal of Combinatorics</a> Volume 20, Issue 1 (2013), #P76.
%e A218577 Triangle starts:
%e A218577 1;
%e A218577 1,    1;
%e A218577 1,    3,     1;
%e A218577 1,    7,     6,      1;
%e A218577 1,   15,    25,     11,      1;
%e A218577 1,   31,    90,     74,     20,      1;
%e A218577 1,   63,   301,    402,    209,     37,      1;
%e A218577 1,  127,   966,   1951,   1629,    590,     70,     1;
%e A218577 1,  255,  3025,   8869,  10839,   6430,   1685,   135,     1;
%e A218577 1,  511,  9330,  38720,  65720,  56878,  25313,  4870,   264,   1;
%e A218577 1, 1023, 28501, 164676, 376114, 444337, 292695, 99996, 14209, 521, 1;
%e A218577 ...
%e A218577 The 53 ascent sequences of length 5 are (dots for zeros):
%e A218577 [ #]     ascent-seq.   #max digit
%e A218577 [ 1]    [ . . . . . ]   0
%e A218577 [ 2]    [ . . . . 1 ]   1
%e A218577 [ 3]    [ . . . 1 . ]   1
%e A218577 [ 4]    [ . . . 1 1 ]   1
%e A218577 [ 5]    [ . . . 1 2 ]   2
%e A218577 [ 6]    [ . . 1 . . ]   1
%e A218577 [ 7]    [ . . 1 . 1 ]   1
%e A218577 [ 8]    [ . . 1 . 2 ]   2
%e A218577 [ 9]    [ . . 1 1 . ]   1
%e A218577 [10]    [ . . 1 1 1 ]   1
%e A218577 [11]    [ . . 1 1 2 ]   2
%e A218577 [12]    [ . . 1 2 . ]   2
%e A218577 [13]    [ . . 1 2 1 ]   2
%e A218577 [14]    [ . . 1 2 2 ]   2
%e A218577 [15]    [ . . 1 2 3 ]   3
%e A218577 [16]    [ . 1 . . . ]   1
%e A218577 [17]    [ . 1 . . 1 ]   1
%e A218577 [18]    [ . 1 . . 2 ]   2
%e A218577 [19]    [ . 1 . 1 . ]   1
%e A218577 [20]    [ . 1 . 1 1 ]   1
%e A218577 [21]    [ . 1 . 1 2 ]   2
%e A218577 [22]    [ . 1 . 1 3 ]   3
%e A218577 [23]    [ . 1 . 2 . ]   2
%e A218577 [24]    [ . 1 . 2 1 ]   2
%e A218577 [25]    [ . 1 . 2 2 ]   2
%e A218577 [26]    [ . 1 . 2 3 ]   3
%e A218577 [27]    [ . 1 1 . . ]   1
%e A218577 [28]    [ . 1 1 . 1 ]   1
%e A218577 [29]    [ . 1 1 . 2 ]   2
%e A218577 [...]
%e A218577 [49]    [ . 1 2 3 . ]   3
%e A218577 [50]    [ . 1 2 3 1 ]   3
%e A218577 [51]    [ . 1 2 3 2 ]   3
%e A218577 [52]    [ . 1 2 3 3 ]   3
%e A218577 [53]    [ . 1 2 3 4 ]   4
%e A218577 There is 1 sequence with maximum zero, 15 with maximum one, etc.,
%e A218577 therefore the fifth row is 1, 15, 25, 11, 1.
%Y A218577 Cf. A022493 (number of ascent sequences), A137251 (ascent sequences with k ascents), A175579 (ascent sequences with k zeros).
%Y A218577 Cf. A218579 (ascent sequences with last zero at position k-1), A218580 (ascent sequences with first occurrence of the maximal value at position k-1), A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
%K A218577 nonn,tabl
%O A218577 1,5
%A A218577 _Joerg Arndt_, Nov 03 2012