This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218622 #9 Nov 04 2012 00:54:19 %S A218622 1,1,1,2,1,1,2,2,1,1,1,0,2,2,2,2,1,1,1,2,1,1,0,0,2,2,2,0,2,2,2,2,1,1, %T A218622 1,2,1,1,2,2,1,1,1,0,0,0,0,0,2,2,2,0,2,2,0,0,2,2,2,0,2,2,2,2,1,1,1,2, %U A218622 1,1,2,2,1,1,1,0,2,2,2,2,1,1,1,2,1,1,0,0,0,0,0,0,0,0,0,0 %N A218622 a(n) = A183161(n) (mod 4), n>=0. %C A218622 Conjecture: a(n) never equals 3. %C A218622 A183161(n) is defined by the convolution: %C A218622 Sum_{k=0..n} A183161(n-k)*A183161(k) = Sum_{k=0..n} C(n+k,n-k)*C(2*n-k,k). %C A218622 The g.f. F(x) of A183161 satisfies: F(x) = 1/sqrt(1 - 2*x*G(x)^2 - 3*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. %H A218622 Paul D. Hanna, <a href="/A218622/b218622.txt">Table of n, a(n) for n = 0..2048</a> %e A218622 Formatting the terms into groups of 8 reveals complex binary patterns: %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 2,2,2,0,2,2,2,2, %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2, %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2, %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 2,2,2,0,2,2,2,2, %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2, %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 2,2,2,0,2,2,2,2, %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2, %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 0,0,0,0,0,0,0,0, %e A218622 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2, %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 2,2,2,0,2,2,2,2, %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2, %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2, %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 2,2,2,0,2,2,2,2, %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, %e A218622 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, %e A218622 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0, %e A218622 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0, %e A218622 2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2, %e A218622 1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 2,2,2,0,2,2,2,2, ... %o A218622 (PARI) {a(n)=local(A2=sum(m=0, n, sum(k=0, m, binomial(m+k, m-k)*binomial(2*m-k, k))*x^m+x*O(x^n))); polcoeff(A2^(1/2), n)%4} %o A218622 (PARI) {a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/sqrt(1-2*x*G^2-3*x^2*G^4), n)%4} %o A218622 (PARI) /* Using Central Trinomial Coefficients A002426: */ %o A218622 {A002426(n)=sum(k=0, n\2, binomial(n, 2*k)*binomial(2*k, k))} %o A218622 {a(n)=if(n==0, 1, sum(k=0, n, A002426(k)*binomial(3*n-k, n-k)*2*k/(3*n-k)))%4} %o A218622 /* Format Print of a(n) into 4 columns of 8 terms each: */ %o A218622 for(n=0,1024,if(n>0,if(n%32==0,print(""),if(n%8==0,print1(" "))));print1(a(n),",")) %Y A218622 Cf. A183161. %K A218622 nonn %O A218622 0,4 %A A218622 _Paul D. Hanna_, Nov 03 2012