This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218652 #11 Sep 12 2015 11:00:28 %S A218652 1,2,12,108,1320,20400,381360,8366400,210712320,5991572160, %T A218652 189846961920,6632804344320,253310120743680,10498203901785600, %U A218652 469251125818675200,22501933753870771200,1152276591132072806400,62756742945031098163200,3622251744055050294988800 %N A218652 E.g.f. satisfies: A(x) = x + log(1 + A(x)^2). %H A218652 Vaclav Kotesovec, <a href="/A218652/b218652.txt">Table of n, a(n) for n = 1..375</a> %H A218652 V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Asymptotic of implicit functions if Fww = 0</a>, Jan 19 2014 %F A218652 E.g.f. A(x) satisfies: %F A218652 (1) A(x - log(1+x^2)) = x. %F A218652 (2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) log(1+x^2)^n / n!. %F A218652 (3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) log(1+x^2)^n/x / n! ). %F A218652 a(n) = n*A218653(n-1). %F A218652 a(n) ~ GAMMA(1/3) * n^(n-5/6) / (6^(1/6) * sqrt(Pi) * exp(n) * (1-log(2))^(n-1/3)). - _Vaclav Kotesovec_, Jan 19 2014 %e A218652 E.g.f: A(x) = x + 2*x^2/2! + 12*x^3/3! + 108*x^4/4! + 1320*x^5/5! +... %e A218652 Related series: %e A218652 A(x)^2 = 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1560*x^5/5! + 25200*x^6/6! +... %e A218652 log(1+A(x)^2) = 2*x^2/2! + 12*x^3/3! + 108*x^4/4! + 1320*x^5/5! +... %t A218652 Rest[CoefficientList[InverseSeries[Series[x - Log[1 + x^2],{x,0,20}],x],x] * Range[0,20]!] (* _Vaclav Kotesovec_, Jan 19 2014 *) %o A218652 (PARI) {a(n)=n!*polcoeff(serreverse(x-log(1+x^2 +x*O(x^n))), n)} %o A218652 for(n=1, 25, print1(a(n), ", ")) %o A218652 (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} %o A218652 {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, log(1 + x^2+x*O(x^n))^m)/m!); n!*polcoeff(A, n)} %o A218652 (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} %o A218652 {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, log(1 + x^2+x*O(x^n))^m/x)/m!)+x*O(x^n)); n!*polcoeff(A, n)} %Y A218652 Cf. A218653, A213640. %K A218652 nonn %O A218652 1,2 %A A218652 _Paul D. Hanna_, Nov 03 2012