This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218677 #5 Nov 04 2012 20:26:36 %S A218677 1,1,3,14,79,516,3802,30668,268815,2522594,25201736,266014607, %T A218677 2953171684,34326755191,416313253084,5251970372080,68737673434847, %U A218677 931207966502919,13031639620371226,188051624603419973,2793741995189126920,42668132798523737471,669061042470049870917 %N A218677 O.g.f.: Sum_{n>=0} n^n * (1+n*x)^(2*n) * x^n/n! * exp(-n*x*(1+n*x)^2). %C A218677 Compare o.g.f. to the curious identity: %C A218677 1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)). %e A218677 O.g.f.: A(x) = 1 + x + 3*x^2 + 14*x^3 + 79*x^4 + 516*x^5 + 3802*x^6 +... %e A218677 where %e A218677 A(x) = 1 + (1+x)^2*x*exp(-x*(1+x)^2) + 2^2*(1+2*x)^4*x^2/2!*exp(-2*x*(1+2*x)^2) + 3^3*(1+3*x)^6*x^3/3!*exp(-3*x*(1+3*x)^2) + 4^4*(1+4*x)^8*x^4/4!*exp(-4*x*(1+4*x)^2) + 5^5*(1+5*x)^10*x^5/5!*exp(-5*x*(1+5*x)^2) +... %e A218677 simplifies to a power series in x with integer coefficients. %o A218677 (PARI) {a(n)=local(A=1+x);A=sum(k=0,n,k^k*(1+k*x)^(2*k)*x^k/k!*exp(-k*x*(1+k*x)^2+x*O(x^n)));polcoeff(A,n)} %o A218677 for(n=0,30,print1(a(n),", ")) %Y A218677 Cf. A218670, A218678, A218679. %K A218677 nonn %O A218677 0,3 %A A218677 _Paul D. Hanna_, Nov 04 2012