This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218679 #6 Jul 25 2025 16:51:03 %S A218679 1,1,5,31,273,2652,30071,375628,5135649,75945388,1202006514, %T A218679 20243446719,360517872287,6758311053521,132833835618576, %U A218679 2728019848249377,58370987166092073,1297916560174624569,29924140267551540116,713934350929955200551,17594768127940813003452 %N A218679 O.g.f.: Sum_{n>=0} n^n * (1+n*x)^(4*n) * x^n/n! * exp(-n*x*(1+n*x)^4). %C A218679 Compare o.g.f. to the curious identity: %C A218679 1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)). %e A218679 O.g.f.: A(x) = 1 + x + 5*x^2 + 31*x^3 + 273*x^4 + 2652*x^5 + 30071*x^6 +... %e A218679 where %e A218679 A(x) = 1 + (1+x)^4*x*exp(-x*(1+x)^4) + 2^2*(1+2*x)^8*x^2/2!*exp(-2*x*(1+2*x)^4) + 3^3*(1+3*x)^12*x^3/3!*exp(-3*x*(1+3*x)^4) + 4^4*(1+4*x)^16*x^4/4!*exp(-4*x*(1+4*x)^4) + 5^5*(1+5*x)^20*x^5/5!*exp(-5*x*(1+5*x)^4) +... %e A218679 simplifies to a power series in x with integer coefficients. %o A218679 (PARI) {a(n)=local(A=1+x);A=sum(k=0,n,k^k*(1+k*x)^(4*k)*x^k/k!*exp(-k*x*(1+k*x)^4+x*O(x^n)));polcoeff(A,n)} %o A218679 for(n=0,30,print1(a(n),", ")) %Y A218679 Cf. A218670, A218677, A218678. %K A218679 nonn %O A218679 0,3 %A A218679 _Paul D. Hanna_, Nov 04 2012