This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218685 #5 Nov 05 2012 18:47:36 %S A218685 1,0,1,6,34,270,3415,31230,681026,6949920,230637870,2546120514, %T A218685 119281951006,1394371349490,87612425583018,1069010047029672, %U A218685 86763885548985810,1094149501538197236,111443560982774811439,1442387644419293694144,180179254059921915232864 %N A218685 O.g.f.: Sum_{n>=0} (1+n^3*x)^n * x^n/n! * exp(-(1+n^3*x)*x). %C A218685 Compare the o.g.f. to the curious identity: %C A218685 1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-(1+n*x)*x). %e A218685 O.g.f: A(x) = 1 + x^2 + 6*x^3 + 34*x^4 + 270*x^5 + 3415*x^6 +... %e A218685 where %e A218685 A(x) = exp(-x) + (1+x)*x*exp(-(1+x)*x) + (1+2^3*x)^2*x^2/2!*exp(-(1+2^3*x)*x) + (1+3^3*x)^3*x^3/3!*exp(-(1+3^3*x)*x) + (1+4^3*x)^4*x^4/4!*exp(-(1+4^3*x)*x) + (1+5^3*x)^5*x^5/5!*exp(-(1+5^3*x)*x) +... %e A218685 simplifies to a power series in x with integer coefficients. %o A218685 (PARI) {a(n)=polcoeff(sum(k=0,n,(1+k^3*x)^k*x^k/k!*exp(-x*(1+k^3*x)+x*O(x^n))),n)} %o A218685 for(n=0,30,print1(a(n),", ")) %Y A218685 Cf. A218687, A218684, A218686. %K A218685 nonn %O A218685 0,4 %A A218685 _Paul D. Hanna_, Nov 05 2012