This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218694 #20 Aug 22 2014 15:28:48 %S A218694 1,1,0,1,2,2,2,3,6,9,10,13,22,32,40,56,86,122,164,229,332,474,656,914, %T A218694 1310,1867,2604,3648,5184,7346,10318,14506,20516,29022,40880,57548, %U A218694 81260,114810,161864,228092,321892,454444,640954,903715,1274998,1799320,2538218,3579714,5049954,7125359,10051844 %N A218694 Carlitz compositions of n into odd parts. %C A218694 Carlitz compositions are compositions where adjacent parts are distinct (see A003242). %H A218694 Joerg Arndt and Alois P. Heinz, <a href="/A218694/b218694.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..262 from Joerg Arndt) %F A218694 G.f.: 1/( 1 - Sum_{j>=0} x^(2j+1)/(1 + x^(2j+1)) ). - _Geoffrey Critzer_, Nov 21 2013 %F A218694 a(n) ~ c / r^n, where r = 0.708865489663179258570259601255070249415... is the root of the equation sum_{j>=0} x^(2j+1)/(1 + x^(2j+1)) = 1, c = 0.3391570949344217123793275284038135702369824934927187... . - _Vaclav Kotesovec_, Aug 22 2014 %e A218694 There are a(12) = 22 such compositions of 12: %e A218694 [ 1] 1 3 1 3 1 3 %e A218694 [ 2] 1 3 1 7 %e A218694 [ 3] 1 3 5 3 %e A218694 [ 4] 1 3 7 1 %e A218694 [ 5] 1 5 1 5 %e A218694 [ 6] 1 7 1 3 %e A218694 [ 7] 1 7 3 1 %e A218694 [ 8] 1 11 %e A218694 [ 9] 3 1 3 1 3 1 %e A218694 [10] 3 1 3 5 %e A218694 [11] 3 1 5 3 %e A218694 [12] 3 1 7 1 %e A218694 [13] 3 5 1 3 %e A218694 [14] 3 5 3 1 %e A218694 [15] 3 9 %e A218694 [16] 5 1 5 1 %e A218694 [17] 5 3 1 3 %e A218694 [18] 5 7 %e A218694 [19] 7 1 3 1 %e A218694 [20] 7 5 %e A218694 [21] 9 3 %e A218694 [22] 11 1 %p A218694 b:= proc(n, t) option remember; `if`(n=0, 1, %p A218694 add(`if`(j=t or irem(j, 2)=0, 0, b(n-j, j)), j=1..n)) %p A218694 end: %p A218694 a:= n-> b(n, 0): %p A218694 seq(a(n), n=0..70); # _Alois P. Heinz_, Nov 08 2012 %t A218694 nn=20;CoefficientList[Series[1/(1-Sum[z^(2j+1)/(1+z^(2j+1)),{j,0,nn}]),{z,0,nn}],z] (* _Geoffrey Critzer_, Nov 21 2013 *) %Y A218694 Cf. A003242 (Carlitz compositions), A032021 (compositions into distinct odd parts), A032020 (compositions into distinct parts). %K A218694 nonn %O A218694 0,5 %A A218694 _Joerg Arndt_, Nov 04 2012