cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A218799 Number of solutions to x^2 + 2y^2 = n^2.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 2, 1, 2, 3, 2, 1, 2, 2, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 5, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 1, 1, 2, 1, 1, 5, 1, 1, 4, 2, 1, 5, 1, 2, 2, 1, 1, 3, 1, 1, 5, 2, 2, 2, 1, 1, 3, 2, 1, 2, 2, 2, 2, 1, 1, 5, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Jon Perry, Nov 06 2012

Keywords

Comments

a(3k) > 1 for all k > 0 because k^2 + 2(2k)^2 = (3k)^2.
Terms with index n^2 in A216282. - Joerg Arndt, Nov 06 2012

Examples

			a(9) = 3 because we have 9^2 + 2*0^2 = 9^2, 3^2 + 2*6^2 = 9^2 and 7^2 + 2*4^2 = 9^2 and no others.
		

Crossrefs

Programs

  • JavaScript
    for (i=0;i<100;i++) {
    d=0;e=0;
    for (a=0;a<=i;a++)
    for (b=0;b<=i;b++) {
    if (Math.pow(a,2)+2*Math.pow(b,2)
    				
  • Mathematica
    nn = 87; t = Sort[Select[Flatten[Table[x^2 + 2*y^2, {x, 0, nn}, {y, 0, nn}]], # <= nn^2 &]]; Table[Count[t, ?(# == n^2 &)], {n, 0, nn}] (* _T. D. Noe, Nov 06 2012 *)
Showing 1-1 of 1 results.