This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218748 #30 Aug 27 2024 19:18:20 %S A218748 0,1,46,2071,93196,4193821,188721946,8492487571,382161940696, %T A218748 17197287331321,773877929909446,34824506845925071,1567102808066628196, %U A218748 70519626362998268821,3173383186334922096946,142802243385071494362571,6426100952328217246315696 %N A218748 a(n) = (45^n - 1)/44. %C A218748 Partial sums of powers of 45 (A009989). %H A218748 Vincenzo Librandi, <a href="/A218748/b218748.txt">Table of n, a(n) for n = 0..600</a> %H A218748 <a href="/index/Par#partial">Index entries related to partial sums</a>. %H A218748 <a href="/index/Q#q-numbers">Index entries related to q-numbers</a>. %H A218748 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (46,-45). %F A218748 G.f.: x/((1-x)*(1-45*x)). - _Vincenzo Librandi_, Nov 08 2012 %F A218748 a(n) = 46*a(n-1) - 45*a(n-2) with a(0)=0, a(1)=1. - _Vincenzo Librandi_, Nov 08 2012 %F A218748 a(n) = 45*a(n-1) + 1 with a(0)=0. - _Vincenzo Librandi_, Nov 08 2012 %F A218748 a(n) = floor(45^n/44). - _Vincenzo Librandi_, Nov 08 2012 %F A218748 E.g.f.: exp(23*x)*sinh(22*x)/22. - _Elmo R. Oliveira_, Aug 27 2024 %t A218748 LinearRecurrence[{46, -45}, {0, 1}, 30] (* _Vincenzo Librandi_, Nov 08 2012 *) %o A218748 (PARI) A218748(n)=45^n\44 %o A218748 (Maxima) A218748(n):=(45^n-1)/44$ makelist(A218748(n),n,0,30); /* _Martin Ettl_, Nov 07 2012 */ %o A218748 (Magma) [n le 2 select n-1 else 46*Self(n-1) - 45*Self(n-2): n in [1..20]]; // _Vincenzo Librandi_, Nov 08 2012 %Y A218748 Cf. similar sequences of the form (k^n-1)/(k-1): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724-A218734, A132469, A218736-A218753, A133853, A094028, A218723. %Y A218748 Cf. A009989. %K A218748 nonn,easy %O A218748 0,3 %A A218748 _M. F. Hasler_, Nov 04 2012