A218829 Number of ordered ways to write n = k + m with k > 0 and m > 0 such that prime(k) + 2 and prime(prime(m)) + 2 are both prime.
0, 0, 1, 2, 2, 3, 2, 3, 4, 2, 3, 2, 2, 3, 2, 4, 3, 2, 3, 3, 3, 1, 3, 3, 1, 4, 4, 2, 3, 4, 4, 4, 4, 5, 3, 4, 4, 1, 4, 4, 3, 5, 4, 3, 3, 4, 6, 3, 5, 5, 3, 3, 3, 2, 4, 5, 4, 5, 4, 2, 3, 4, 4, 5, 5, 7, 4, 5, 2, 6, 4, 5, 7, 3, 5, 6, 2, 4, 3, 2
Offset: 1
Keywords
Examples
a(3) = 1 since 3 = 2 + 1 with prime(2) + 2 = 3 + 2 = 5 and prime(prime(1)) + 2 = prime(2) + 2 = 5 both prime. a(22) = 1 since 22 = 20 + 2 with prime(20) + 2 = 71 + 2 = 73 and prime(prime(2)) + 2 = prime(3) + 2 = 5 + 2 = 7 both prime. a(25) = 1 since 25 = 2 + 23 with prime(2) + 2 = 3 + 2 = 5 and prime(prime(23)) + 2 = prime(83) + 2 = 431 + 2 = 433 both prime. a(38) = 1 since 38 = 35 + 3 with prime(35) + 2 = 149 + 2 = 151 and prime(prime(3)) + 2 = prime(5) + 2 = 11 + 2 = 13 both prime. a(101) = 1 since 101 = 98 + 3 with prime(98) + 2 = 521 + 2 = 523 and prime(prime(3)) + 2 = prime(5) + 2 = 11 + 2 = 13 both prime. a(273) = 1 since 273 = 2 + 271 with prime(2) + 2 = 3 + 2 = 5 and prime(prime(271)) + 2 = prime(1741) + 2 = 14867 + 2 = 14869 both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Andrei-Lucian Dragoi, The "Vertical" Generalization of the Binary Goldbach's Conjecture as Applied on "Iterative" Primes with (Recursive) Prime Indexes (i-primeths), Journal of Advances in Mathematics and Computer Science (2017), Vol. 25, No. 2, pp. 1-32.
- Zhi-Wei Sun, Unification of Goldbach's conjecture and the twin prime conjecture, a message to Number Theory List, Jan. 29, 2014.
- Zhi-Wei Sun, Super Twin Prime Conjecture, a message to Number Theory List, Feb. 6, 2014.
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Crossrefs
Programs
-
Mathematica
pq[n_]:=PrimeQ[Prime[n]+2] PQ[n_]:=PrimeQ[Prime[Prime[n]]+2] a[n_]:=Sum[If[pq[k]&&PQ[n-k],1,0],{k,1,n-1}] Table[a[n],{n,1,80}]
Comments