This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218868 #28 Jul 26 2018 16:59:33 %S A218868 1,2,3,3,10,14,25,95,176,424,120,721,3269,1050,6406,21202,12712,42561, %T A218868 178443,141876,436402,1622798,1418400,151200,3628801,17064179, %U A218868 17061660,2162160,48073796,177093256,212254548,41580000,479001601,2293658861,2735287698,719072640 %N A218868 Triangular array read by rows: T(n,k) is the number of n-permutations that have exactly k distinct cycle lengths. %C A218868 T(A000217(n),n) gives A246292. - _Alois P. Heinz_, Aug 21 2014 %H A218868 Alois P. Heinz, <a href="/A218868/b218868.txt">Rows n = 1..170, flattened</a> %H A218868 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge University Press, 2009 %F A218868 E.g.f.: Product_{i>=1} (1 + y*exp(x^i/i) - y). %e A218868 : 1; %e A218868 : 2; %e A218868 : 3, 3; %e A218868 : 10, 14; %e A218868 : 25, 95; %e A218868 : 176, 424, 120; %e A218868 : 721, 3269, 1050; %e A218868 : 6406, 21202, 12712; %e A218868 : 42561, 178443, 141876; %e A218868 : 436402, 1622798, 1418400, 151200; %p A218868 with(combinat): %p A218868 b:= proc(n, i) option remember; expand(`if`(n=0, 1, %p A218868 `if`(i<1, 0, add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!* %p A218868 b(n-i*j, i-1)*`if`(j=0, 1, x), j=0..n/i)))) %p A218868 end: %p A218868 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)): %p A218868 seq(T(n), n=1..16); # _Alois P. Heinz_, Aug 21 2014 %t A218868 nn=10;a=Product[1-y+y Exp[x^i/i],{i,1,nn}];f[list_]:=Select[list,#>0&];Map[f,Drop[Range[0,nn]!CoefficientList[Series[a ,{x,0,nn}],{x,y}],1]]//Grid %Y A218868 Columns k=1-3 give: A005225, A005772, A133119. %Y A218868 Row sums are: A000142. %Y A218868 Row lengths are: A003056. %Y A218868 Cf. A208437, A242027 (the same for endofunctions), A246292, A317327. %K A218868 nonn,tabf %O A218868 1,2 %A A218868 _Geoffrey Critzer_, Nov 07 2012