This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218870 #20 Aug 02 2014 06:14:09 %S A218870 2,2,2,4,6,6,6,10,12,12,12,24,28,30,30,20,40,48,52,54,54,40,92,112, %T A218870 120,124,126,126,74,174,210,226,234,238,240,240,148,362,438,474,490, %U A218870 498,502,504,504,286,700,860,928,960,976,984,988,990,990,572,1448,1776,1916,1984,2016,2032,2040,2044,2046,2046 %N A218870 Triangle read by rows: T(n,k) = number of aperiodic binary sequences of length n with curling number <= k (1 <= k <= n). %C A218870 S is aperiodic if it is not of the form S = T^m with m > 1. %C A218870 Rows are partial sums of rows of A218869. %C A218870 Final entries in rows form A027375. First column is A122536. %H A218870 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://arxiv.org/abs/1212.6102">On Curling Numbers of Integer Sequences</a>, arXiv:1212.6102, Dec 25 2012. %H A218870 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Sloane/sloane3.html">On Curling Numbers of Integer Sequences</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3. %H A218870 N. J. A. Sloane, <a href="/A218870/a218870.txt">Rows 1 through 36</a> %H A218870 <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a> %e A218870 Triangle begins: %e A218870 [2] %e A218870 [2, 2] %e A218870 [4, 6, 6] %e A218870 [6, 10, 12, 12] %e A218870 [12, 24, 28, 30, 30] %e A218870 [20, 40, 48, 52, 54, 54] %e A218870 [40, 92, 112, 120, 124, 126, 126] %e A218870 [74, 174, 210, 226, 234, 238, 240, 240] %e A218870 [148, 362, 438, 474, 490, 498, 502, 504, 504] %e A218870 [286, 700, 860, 928, 960, 976, 984, 988, 990, 990] %e A218870 [572, 1448, 1776, 1916, 1984, 2016, 2032, 2040, 2044, 2046, 2046] %e A218870 ... %Y A218870 Cf. A216955, A122536, A027375, A218869. %K A218870 nonn,tabl %O A218870 1,1 %A A218870 _N. J. A. Sloane_, Nov 07 2012