This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218875 #26 Aug 02 2014 06:14:09 %S A218875 2,2,0,4,2,0,6,4,2,0,10,12,4,2,0,20,20,8,4,2,0,36,52,20,8,4,2,0,72,98, %T A218875 36,16,8,4,2,0,142,214,76,36,16,8,4,2,0,280,414,160,68,32,16,8,4,2,0, %U A218875 560,870,326,140,68,32,16,8,4,2,0,1114,1720,640,276,132,64,32,16,8,4,2,0 %N A218875 Triangle read by rows: T(n,k) (1 <= k <= n) = number of robust primitive binary sequences of length n and curling number k. %H A218875 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://arxiv.org/abs/1212.6102">On Curling Numbers of Integer Sequences</a>, arXiv:1212.6102, Dec 25 2012. %H A218875 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Sloane/sloane3.html">On Curling Numbers of Integer Sequences</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3. %H A218875 N. J. A. Sloane, <a href="/A218875/a218875.txt">First 36 rows of table</a> %H A218875 <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a> %F A218875 The triangle in A218869 is the sum of triangles A218875 and A218876. %e A218875 Triangle begins: %e A218875 [2], %e A218875 [2, 0], %e A218875 [4, 2, 0], %e A218875 [6, 4, 2, 0], %e A218875 [10, 12, 4, 2, 0], %e A218875 [20, 20, 8, 4, 2, 0], %e A218875 [36, 52, 20, 8, 4, 2, 0], %e A218875 [72, 98, 36, 16, 8, 4, 2, 0], %e A218875 [142, 214, 76, 36, 16, 8, 4, 2, 0], %e A218875 [280, 414, 160, 68, 32, 16, 8, 4, 2, 0], %e A218875 ... %Y A218875 Cf. A216955, A218869, A218876. First column is A216958. %K A218875 nonn,tabl %O A218875 1,1 %A A218875 _N. J. A. Sloane_, Nov 15 2012