cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218876 Triangle read by rows: T(n,k) (1 <= k <= n) = number of non-robust primitive binary sequences of length n and curling number k.

This page as a plain text file.
%I A218876 #15 Jun 17 2021 05:41:24
%S A218876 0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,2,2,0,0,0,0,
%T A218876 0,0,6,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,12,6,2,0,0,0,0,0,0,0,0,10,
%U A218876 2,0,0,0,0,0,0,0,0,0,0,26,6,0,0,0,0,0,0,0,0,0,0,0
%N A218876 Triangle read by rows: T(n,k) (1 <= k <= n) = number of non-robust primitive binary sequences of length n and curling number k.
%H A218876 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://arxiv.org/abs/1212.6102">On Curling Numbers of Integer Sequences</a>, arXiv:1212.6102, Dec 25 2012.
%H A218876 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Sloane/sloane3.html">On Curling Numbers of Integer Sequences</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
%H A218876 N. J. A. Sloane, <a href="/A218876/a218876.pdf">On Curling Numbers of Integer Sequences</a>, Combinatorics on Words Conference, Fields Institute, Toronto, April 22, 2013.
%H A218876 N. J. A. Sloane, <a href="/A218876/a218876.txt">First 36 rows of table</a>
%H A218876 <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a>
%F A218876 The triangle in A218869 is the sum of triangles A218875 and A218876.
%e A218876 Triangle begins:
%e A218876 [0],
%e A218876 [0, 0],
%e A218876 [0, 0, 0],
%e A218876 [0, 0, 0, 0],
%e A218876 [2, 0, 0, 0, 0],
%e A218876 [0, 0, 0, 0, 0, 0],
%e A218876 [4, 0, 0, 0, 0, 0, 0],
%e A218876 [2, 2, 0, 0, 0, 0, 0, 0],
%e A218876 [6, 0, 0, 0, 0, 0, 0, 0, 0],
%e A218876 [6, 0, 0, 0, 0, 0, 0, 0, 0, 0],
%e A218876 [12, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0],
%e A218876 [10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
%e A218876 ...
%Y A218876 Cf. A216955, A218869, A218875.
%K A218876 nonn,tabl
%O A218876 1,11
%A A218876 _N. J. A. Sloane_, Nov 15 2012