This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218905 #20 Nov 04 2024 19:24:06 %S A218905 1,1,1,1,3,1,1,3,4,3,1,1,3,4,5,4,3,1,1,3,4,5,4,6,5,4,4,3,1,1,3,4,5,4, %T A218905 6,7,6,6,6,5,4,4,3,1,1,3,4,5,4,6,7,4,6,6,8,7,8,6,6,6,5,4,4,4,3,1,1,3, %U A218905 4,5,4,6,7,4,6,6,8,9,6,8,8,8,8,7,9,8,6,6,6,6,5,4,4,4,3,1,1,3,4,5,4,6,7,4,6,6,8,9,4,6,8,8,8,10,9,8,8,9,10,8,8,8,8,7,9,8,8,6,6,6,6,5,4,4,4,4,3,1 %N A218905 Irregular triangle, read by rows, of kernel sizes of the integer partitions of n taken in graded reverse lexicographic ordering. %C A218905 The kernel of an integer partition is the intersection of its Ferrers diagram and of the Ferrers diagram of its conjugate. %C A218905 See comments in A080577 for the graded reverse lexicographic ordering. %C A218905 Row length is A000041(n). %C A218905 Row sum is A218904(n). %H A218905 Alois P. Heinz, <a href="/A218905/b218905.txt">Rows n = 1..26, flattened</a> %e A218905 Triangle begins: %e A218905 1; %e A218905 1, 1; %e A218905 1, 3, 1; %e A218905 1, 3, 4, 3, 1; %e A218905 1, 3, 4, 5, 4, 3, 1; %e A218905 1, 3, 4, 5, 4, 6, 5, 4, 4, 3, 1; %e A218905 1, 3, 4, 5, 4, 6, 7, 6, 6, 6, 5, 4, 4, 3, 1; %e A218905 1, 3, 4, 5, 4, 6, 7, 4, 6, 6, 8, 7, 8, 6, 6, 6, 5, 4, 4, 4, 3, 1; %e A218905 ... %p A218905 h:= proc(l) local ll; ll:= [seq(add( %p A218905 `if`(l[j]>=i, 1, 0), j=1..nops(l)), i=1..l[1])]; %p A218905 add(min(l[i], ll[i]), i=1..min(nops(l), nops(ll))) %p A218905 end: %p A218905 g:= (n, i, l)-> `if`(n=0 or i=1, [h([l[], 1$n])], %p A218905 [`if`(i>n, [], g(n-i, i, [l[], i]))[], g(n, i-1, l)[]]): %p A218905 T:= n-> g(n, n, [])[]: %p A218905 seq(T(n), n=1..10); # _Alois P. Heinz_, Dec 14 2012 %t A218905 h[l_List] := Module[{ll}, ll = Flatten[Table[Sum[If[l[[j]] >= i, 1, 0], {j, 1, Length[l]}], {i, 1, l[[1]]}]]; Sum[Min[l[[i]], ll[[i]]], {i, 1, Min[ Length[l], Length[ll]]}]]; g[n_, i_, l_List] := If[n==0 || i==1, Join[ {h[Join[l, Array[1&, n]]]}], Join[If[i>n, {}, g[n-i, i, Join [l, {i}]]], g[n, i-1, l]]]; T[n_] := g[n, n, {}]; Table[T[n], {n, 1, 10}] // Flatten (* _Jean-François Alcover_, Dec 23 2015, after _Alois P. Heinz_ *) %Y A218905 Cf. A218904. %K A218905 nonn,tabf,look %O A218905 1,5 %A A218905 _Olivier Gérard_, Nov 08 2012