This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218907 #11 Mar 12 2016 15:29:22 %S A218907 1,2,0,2,0,1,2,0,2,1,2,0,2,2,1,2,0,2,4,2,1,2,0,2,4,2,4,1,2,0,2,6,2,6, %T A218907 2,2,2,0,2,6,2,8,2,6,2,2,0,2,8,2,8,2,12,4,2,2,0,2,8,2,10,2,14,6,8,2,2, %U A218907 0,2,10,2,10,2,18,8,14,6,3,2,0,2,10,2,12,2,18,10,20,10,10,3,2,0,2,12,2,12,2,22,12,22,14,20,10,3,2,0,2,12,2,14,2,22,16,26,16,26,20,12,4 %N A218907 Triangle, read by rows, of integer partitions of n by kernel size k. %C A218907 Row sum is A000041. %C A218907 Sum k*T(n,k) = A208914(n). %C A218907 The kernel of an integer partition is the intersection of its Ferrers diagram and of the Ferrers diagram of its conjugate. %C A218907 Its size is between 1 (for an all-1 partition) and n (for a self-conjugate partition). %e A218907 Triangle begins: %e A218907 1; %e A218907 2, 0; %e A218907 2, 0, 1; %e A218907 2, 0, 2, 1; %e A218907 2, 0, 2, 2, 1; %e A218907 2, 0, 2, 4, 2, 1; %e A218907 2, 0, 2, 4, 2, 4, 1; %e A218907 2, 0, 2, 6, 2, 6, 2, 2; %e A218907 2, 0, 2, 6, 2, 8, 2, 6, 2; %e A218907 2, 0, 2, 8, 2, 8, 2, 12, 4, 2; %e A218907 2, 0, 2, 8, 2, 10, 2, 14, 6, 8, 2; %e A218907 2, 0, 2, 10, 2, 10, 2, 18, 8, 14, 6, 3; %e A218907 2, 0, 2, 10, 2, 12, 2, 18, 10, 20, 10, 10, 3; %e A218907 2, 0, 2, 12, 2, 12, 2, 22, 12, 22, 14, 20, 10, 3; %e A218907 2, 0, 2, 12, 2, 14, 2, 22, 16, 26, 16, 26, 20, 12, 4; %Y A218907 Cf. A218904, A218905, A218906. %Y A218907 Cf. A115720, A115994, A246581. %Y A218907 Main diagonal gives A000700. %K A218907 nonn,tabl %O A218907 1,2 %A A218907 _Olivier Gérard_, Nov 08 2012