cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218913 Number of distinct orders of subgroups of the symmetric group.

This page as a plain text file.
%I A218913 #24 Mar 20 2020 10:41:51
%S A218913 1,1,2,4,8,13,21,31,49,74,113,139,216,268
%N A218913 Number of distinct orders of subgroups of the symmetric group.
%H A218913 L. Naughton and G. Pfeiffer, <a href="http://arxiv.org/abs/1211.1911">Integer sequences realized by the subgroup pattern of the symmetric group</a>, arXiv:1211.1911 [math.GR], 2012-2013 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Naughton/naughton2.html">J. Int. Seq. 16 (2013) #13.5.8</a>
%H A218913 Liam Naughton, <a href="http://www.maths.nuigalway.ie/~liam/CountingSubgroups.g">CountingSubgroups.g</a>
%H A218913 Liam Naughton and Goetz Pfeiffer, <a href="http://schmidt.nuigalway.ie/tomlib/">Tomlib, The GAP table of marks library</a>,
%o A218913 (GAP)
%o A218913 Size(DuplicateFreeList(List(ConjugacyClassesSubgroups(G), x-> Size(Representative (x)))));
%o A218913 (Sage)
%o A218913 def A218913(n):
%o A218913     G = SymmetricGroup(n)
%o A218913     subgroups = G.conjugacy_classes_subgroups()
%o A218913     return len(set(subG.cardinality() for subG in subgroups))
%o A218913 # _Peter Luschny_, Apr 21 2016
%K A218913 nonn,more
%O A218913 0,3
%A A218913 _Liam Naughton_, Nov 09 2012