A218915 Number of missing subgroup orders of the symmetric group, that is, i divides Factorial(n) but the symmetric group on n points does not have a subgroup of order i.
0, 0, 0, 0, 0, 3, 9, 29, 47, 86, 157, 401, 576, 1316
Offset: 0
Links
- L. Naughton and G. Pfeiffer, Integer sequences realized by the subgroup pattern of the symmetric group, arXiv:1211.1911 [math.GR], 2012-2013.
- Liam Naughton, CountingSubgroups.g
- Liam Naughton and Goetz Pfeiffer, Tomlib, The GAP table of marks library
Programs
-
GAP
Size(Difference(DivisorsInt(Factorial(n)), DuplicateFreeList(List(ConjugacyClassesSubgroups(SymmetricGroup(n)), x->Size(Representative(x))))));
-
Mathematica
A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]]; A027423 = A@027423; A218913 = A@218913; a[n_] := A027423[[n+1]] - A218913[[n+1]]; a /@ Range[0, 13] (* Jean-François Alcover, Jan 08 2020 *)