cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218970 Number of connected cyclic conjugacy classes of subgroups of the symmetric group.

This page as a plain text file.
%I A218970 #17 Dec 05 2018 07:57:54
%S A218970 1,1,1,1,2,1,4,1,5,3,8,2,14,3,17,11,24,10,40,16,53,35,71,43,112,68,
%T A218970 144,112,203,152,301,219,393,342,540,474,770,661,1022,967,1397,1313,
%U A218970 1928,1821,2565,2564,3439,3445,4676,4687,6186,6406,8215,8543,10974,11435
%N A218970 Number of connected cyclic conjugacy classes of subgroups of the symmetric group.
%C A218970 a(n) is also the number of connected partitions of n in the following sense. Given a partition of n, the vertices are the parts of the partition and two vertices are connected if and only if their gcd is greater than 1. We call a partition connected if the graph is connected.
%H A218970 Liam Naughton and Goetz Pfeiffer, <a href="http://arxiv.org/abs/1211.1911">Integer sequences realized by the subgroup pattern of the symmetric group</a>, arXiv:1211.1911 [math.GR], 2012-2013.
%H A218970 Liam Naughton, <a href="http://www.maths.nuigalway.ie/~liam/CountingSubgroups.g">CountingSubgroups.g</a>
%H A218970 Liam Naughton and Goetz Pfeiffer, <a href="http://schmidt.nuigalway.ie/tomlib/">Tomlib, The GAP table of marks library</a>
%F A218970 For n > 1, a(n) = A304716(n) - 1. - _Gus Wiseman_, Dec 03 2018
%e A218970 From _Gus Wiseman_, Dec 03 2018: (Start)
%e A218970 The a(12) = 14 connected integer partitions of 12:
%e A218970   (12)  (6,6)   (4,4,4)  (3,3,3,3)  (4,2,2,2,2)  (2,2,2,2,2,2)
%e A218970         (8,4)   (6,3,3)  (4,4,2,2)
%e A218970         (9,3)   (6,4,2)  (6,2,2,2)
%e A218970         (10,2)  (8,2,2)
%e A218970 (End)
%t A218970 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
%t A218970 Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]==1&]],{n,10}]
%Y A218970 Cf. A018783, A200976, A286518, A286520, A290103, A304714, A304716, A305078, A305079, A322306, A322307.
%K A218970 nonn
%O A218970 0,5
%A A218970 _Liam Naughton_, Nov 26 2012
%E A218970 More terms from _Gus Wiseman_, Dec 03 2018