cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218976 a(n) is the smallest positive integer such that 10^(2 + floor(k/a(1)) + floor(k/a(2)) + ... + floor(k/a(n))) divides (k+9)! for all k > 0.

Original entry on oeis.org

6, 16, 116, 241, 242, 491, 991, 2491, 3331, 14966, 15556, 62491, 78116, 83331, 249991, 264866, 546841, 1109366, 2265491, 4999861, 4999991, 5837041, 12499996, 25249861, 26011861, 36249091, 80070866, 190999991, 242090611, 365038621, 976562241, 1210466866, 1830622801
Offset: 1

Views

Author

Keywords

Comments

Every factorial of the form (k+9)! for every integer k > 0 ends at least in two zeros. This sequence gives a lower bound on the number of zeros.
This sequence is infinite and increasing, with 1/a(1) + 1/a(2) + ... = 1/4.
Conjecture: All terms except a(5) are 1 mod 5. - R. J. Cano, Nov 11 2012

Examples

			10^(2 + floor(5/5)) does not divide 14!, so a(1) > 5. But 10^(2 + floor(k/6)) divides (k+9)! for all k > 0, so a(1) = 6.
		

Crossrefs

Programs

  • PARI
    searchLimit(s1)={
        my(e,s2,f=(e,s)->(e+2-9*s)/(s-s1));
        while(s2<=s1, s2 += 1/5^e++);
        min(f(e,s2), f(e++,s2+=1/5^e))\1
    };
    v5(n)=my(s);while(n\=5,s+=n);s;
    nxt(v=[6])={
        my(S=sum(i=1,#v,1/v[i]), candidate=max(v[#v],1\(1/4-S))+1, k=candidate, lm=searchLimit(S+1/candidate));
        while(k<=lm,
            if(v5(k+9)<2+sum(i=1,#v,k\v[i])+k\candidate,
                candidate++;
                lm=searchLimit(S+1/candidate)
            ,
                k++
            )
        );
        candidate
    };
    steps(n)={
        my(v=[6],t);
        print1(6);
        for(i=2,n,
            t=nxt(v);
            print1(", "t);
            v=concat(v,t)
        );
        v
    };
    steps(20)

Formula

Let Psi(k) = 2 + sum_{n >= 1} floor(k/a(n)). Then 10^Psi(k) divides (k+9)!.

Extensions

a(32)-a(33) from Charles R Greathouse IV, Nov 19 2012