This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218984 #13 Nov 13 2017 07:06:35 %S A218984 4,17,75,333,1481,6589,29317,130445,580413,2582541,11490989,51129037, %T A218984 227498125,1012250573,4503998541,20040495309,89169978317,396760903885, %U A218984 1765383572173,7855056096461,34950991530189,155514078313677,691958296315085,3078861341887693 %N A218984 Power floor sequence of 2+sqrt(6). %C A218984 See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(6), and the limit p1(r) = 3.77794213613376987528458445727451673384055973517... %H A218984 Clark Kimberling, <a href="/A218984/b218984.txt">Table of n, a(n) for n = 0..250</a> %H A218984 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-2,-2). %F A218984 a(n) = [x*a(n-1)], where x=2+sqrt(6), a(0) = [x]. %F A218984 a(n) = 5*a(n-1) - 2*a(n-2) - 2*a(n-3). %F A218984 G.f.: (4 - 3*x - 2*x^2)/(1 - 5*x + 2*x^2 + 2*x^3). %F A218984 a(n) = (1/30)*(6 + (57-23*sqrt(6))*(2-sqrt(6))^n + (2+sqrt(6))^n*(57+23*sqrt(6))). - _Colin Barker_, Nov 13 2017 %e A218984 a(0) = [r] = 4, where r = 2+sqrt(6); a(1) = [4*r] = 17; a(2) = [17*r] = 75. %t A218984 x = 2 + Sqrt[6]; z = 30; (* z = # terms in sequences *) %t A218984 f[x_] := Floor[x]; c[x_] := Ceiling[x]; %t A218984 p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x]; %t A218984 p1[n_] := f[x*p1[n - 1]] %t A218984 p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]] %t A218984 p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]] %t A218984 p4[n_] := c[x*p4[n - 1]] %t A218984 t1 = Table[p1[n], {n, 0, z}] (* A218984 *) %t A218984 t2 = Table[p2[n], {n, 0, z}] (* A090017 *) %t A218984 t3 = Table[p3[n], {n, 0, z}] (* A123347 *) %t A218984 t4 = Table[p4[n], {n, 0, z}] (* A218985 *) %o A218984 (PARI) Vec((4 - 3*x - 2*x^2) / ((1 - x)*(1 - 4*x - 2*x^2)) + O(x^40)) \\ _Colin Barker_, Nov 13 2017 %Y A218984 Cf. A214992, A090017, A123347, A218985. %K A218984 nonn,easy %O A218984 0,1 %A A218984 _Clark Kimberling_, Nov 11 2012