This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A218986 #13 Sep 02 2016 06:00:53 %S A218986 4,18,83,385,1788,8306,38587,179265,832820,3869074,17974755,83506241, %T A218986 387949228,1802315634,8373110219,38899387777,180716881764, %U A218986 839565690386,3900413406835,18120350698497,84182643014492,391091624153458,1816914425657307,8440932575089601 %N A218986 Power floor sequence of 2+sqrt(7). %C A218986 See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(7), and the limit p1(r) = 3.83798607113023840500712572585708... %C A218986 See A218987 for the power floor function, p4. For comparison with p1, limit(p4(r)/p1(r) = 4-sqrt(7). %H A218986 Clark Kimberling, <a href="/A218986/b218986.txt">Table of n, a(n) for n = 0..250</a> %H A218986 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-1,-3). %F A218986 a(n) = [x*a(n-1)], where x=2+sqrt(7), a(0) = [x]. %F A218986 a(n) = 5*a(n-1) - a(n-2) - 3*a(n-3). %F A218986 G.f.: (4 - 2*x - 3*x^2)/(1 - 5*x + x^2 + 3*x^3). %F A218986 a(n) = (14+(161-61*sqrt(7))*(2-sqrt(7))^n+(2+sqrt(7))^n*(161+61*sqrt(7)))/84. - _Colin Barker_, Sep 02 2016 %e A218986 a(0) = [r] = 4, where r = 2+sqrt(7); %e A218986 a(1) = [4*r] = 18; a(2) = [18*r] = 83. %t A218986 x = 2 + Sqrt[7]; z = 30; (* z = # terms in sequences *) %t A218986 f[x_] := Floor[x]; c[x_] := Ceiling[x]; %t A218986 p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x]; %t A218986 p1[n_] := f[x*p1[n - 1]] %t A218986 p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]] %t A218986 p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]] %t A218986 p4[n_] := c[x*p4[n - 1]] %t A218986 t1 = Table[p1[n], {n, 0, z}] (* A218986 *) %t A218986 t2 = Table[p2[n], {n, 0, z}] (* A015530 *) %t A218986 t3 = Table[p3[n], {n, 0, z}] (* A126473 *) %t A218986 t4 = Table[p4[n], {n, 0, z}] (* A218987 *) %t A218986 LinearRecurrence[{5,-1,-3},{4,18,83},30] (* _Harvey P. Dale_, Jun 18 2014 *) %o A218986 (PARI) a(n) = round((14+(161-61*sqrt(7))*(2-sqrt(7))^n+(2+sqrt(7))^n*(161+61*sqrt(7)))/84) \\ _Colin Barker_, Sep 02 2016 %o A218986 (PARI) Vec((4-2*x-3*x^2)/((1-x)*(1-4*x-3*x^2)) + O(x^30)) \\ _Colin Barker_, Sep 02 2016 %Y A218986 Cf. A214992, A015530, A126473, A218987. %K A218986 nonn,easy %O A218986 0,1 %A A218986 _Clark Kimberling_, Nov 11 2012