cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A218997 Unmatched value maps: number of n X 3 binary arrays indicating the locations of corresponding elements not equal to any horizontal, diagonal or antidiagonal neighbor in a random 0..2 n X 3 array.

Original entry on oeis.org

4, 46, 328, 2374, 17776, 131548, 973492, 7213582, 53429692, 395740366, 2931304708, 21712231084, 160822807612, 1191219388318, 8823392421952, 65355090312238, 484086844724824, 3585643697043796, 26558954938197124, 196722861904335358
Offset: 1

Views

Author

R. H. Hardin, Nov 09 2012

Keywords

Comments

Column 3 of A219002.

Examples

			Some solutions for n=3:
..0..1..0....1..1..1....0..1..0....1..0..0....0..0..0....0..1..1....0..0..0
..0..0..1....0..1..0....0..0..0....0..0..1....0..1..1....1..0..0....1..0..1
..1..0..0....1..0..1....0..1..0....1..0..1....1..0..0....0..1..0....0..1..0
		

Crossrefs

Cf. A219002.

Formula

Empirical: a(n) = 4*a(n-1) + 15*a(n-2) + 66*a(n-3) + 63*a(n-4) + 72*a(n-5).
Empirical g.f.: 2*x*(2 + 15*x + 42*x^2 + 54*x^3 + 36*x^4) / (1 - 4*x - 15*x^2 - 66*x^3 - 63*x^4 - 72*x^5). - Colin Barker, Jul 24 2018

A218998 Unmatched value maps: number of nX4 binary arrays indicating the locations of corresponding elements not equal to any horizontal, diagonal or antidiagonal neighbor in a random 0..2 nX4 array.

Original entry on oeis.org

7, 163, 2265, 31857, 461681, 6639893, 95431043, 1372612359, 19740345667, 283887907827, 4082690596769, 58714522782689, 844392025770105, 12143471562419701, 174639147022394875, 2511541333793121239
Offset: 1

Views

Author

R. H. Hardin Nov 09 2012

Keywords

Comments

Column 4 of A219002

Examples

			Some solutions for n=3
..0..0..0..1....0..1..1..0....0..1..1..1....1..0..1..0....0..1..0..0
..0..0..1..1....0..0..0..0....0..0..0..0....0..0..0..1....0..0..0..0
..0..0..1..1....0..1..1..1....1..0..0..0....1..1..1..0....1..0..1..0
		

Formula

Empirical: a(n) = 10*a(n-1) +42*a(n-2) +282*a(n-3) +281*a(n-4) +148*a(n-5) -320*a(n-6) -320*a(n-7) -256*a(n-8)

A219003 Unmatched value maps: number of 2 X n binary arrays indicating the locations of corresponding elements not equal to any horizontal, diagonal or antidiagonal neighbor in a random 0..2 2 X n array.

Original entry on oeis.org

1, 10, 46, 163, 604, 2341, 9019, 34489, 131968, 505576, 1936801, 7418188, 28412533, 108826777, 416833201, 1596565270, 6115202470, 23422612879, 89713931536, 343624709737, 1316160560251, 5041193495617, 19308914689348, 73957523312800
Offset: 1

Views

Author

R. H. Hardin, Nov 09 2012

Keywords

Comments

Row 2 of A219002.

Examples

			Some solutions for n=3:
..1..0..0....1..0..1....1..0..1....1..1..0....0..1..0....0..0..1....0..1..1
..1..1..1....0..1..0....0..0..1....1..0..1....1..0..0....0..1..1....0..0..1
		

Crossrefs

Cf. A219002.

Formula

Empirical: a(n) = 4*a(n-1) - 3*a(n-2) + 9*a(n-3).
Empirical g.f.: x*(1 + 3*x)^2 / (1 - 4*x + 3*x^2 - 9*x^3). - Colin Barker, Jul 25 2018

A219004 Unmatched value maps: number of 3 X n binary arrays indicating the locations of corresponding elements not equal to any horizontal, diagonal or antidiagonal neighbor in a random 0..2 3 X n array.

Original entry on oeis.org

1, 36, 328, 2265, 16648, 127401, 966981, 7298225, 55135016, 416848560, 3151246505, 23819866072, 180053403609, 1361036722345, 10288162925081, 77768717139628, 587857527338664, 4443644969933825, 33589738253657200, 253906529656115169
Offset: 1

Views

Author

R. H. Hardin, Nov 09 2012

Keywords

Comments

Row 3 of A219002.

Examples

			Some solutions for n=3:
..1..1..0....0..0..1....0..1..0....1..1..1....0..0..1....1..1..0....0..0..0
..0..0..1....0..1..1....0..0..0....1..0..0....1..0..0....1..0..1....1..1..1
..1..1..0....1..0..0....0..0..0....1..1..1....1..0..0....0..1..0....1..1..1
		

Crossrefs

Cf. A219002.

Formula

Empirical: a(n) = 7*a(n-1) - 3*a(n-2) + 49*a(n-3) + 45*a(n-4) - 17*a(n-5) - 15*a(n-6).
Empirical g.f.: x*(1 + 29*x + 79*x^2 + 28*x^3 - 32*x^4 - 15*x^5) / (1 - 7*x + 3*x^2 - 49*x^3 - 45*x^4 + 17*x^5 + 15*x^6). - Colin Barker, Jul 25 2018

A218996 Unmatched value maps: number of n X n binary arrays indicating the locations of corresponding elements not equal to any horizontal, diagonal or antidiagonal neighbor in a random 0..2 n X n array.

Original entry on oeis.org

1, 10, 328, 31857, 13259232, 22776074699
Offset: 1

Views

Author

R. H. Hardin Nov 09 2012

Keywords

Comments

Diagonal of A219002

Examples

			Some solutions for n=3
..0..0..0....0..0..1....0..0..0....1..1..0....0..1..0....1..1..1....1..0..0
..0..0..1....0..0..1....1..0..0....0..0..1....0..0..1....0..0..1....1..0..1
..1..1..0....0..1..1....0..1..0....1..0..1....1..1..1....0..0..0....0..0..0
		

A218999 Unmatched value maps: number of nX5 binary arrays indicating the locations of corresponding elements not equal to any horizontal, diagonal or antidiagonal neighbor in a random 0..2 nX5 array.

Original entry on oeis.org

12, 604, 16648, 462668, 13259232, 377629096, 10745153084, 305936314868, 8710085382952
Offset: 1

Views

Author

R. H. Hardin Nov 09 2012

Keywords

Comments

Column 5 of A219002

Examples

			Some solutions for n=3
..0..1..1..0..1....1..0..0..0..0....1..1..1..0..0....0..1..1..1..0
..1..0..1..1..0....0..1..0..1..1....1..1..0..1..0....1..0..0..0..0
..0..1..0..0..1....1..0..0..0..1....1..1..1..0..1....0..0..0..0..0
		

A219000 Unmatched value maps: number of nX6 binary arrays indicating the locations of corresponding elements not equal to any horizontal, diagonal or antidiagonal neighbor in a random 0..2 nX6 array.

Original entry on oeis.org

21, 2341, 127401, 7027671, 401608939, 22776074699
Offset: 1

Views

Author

R. H. Hardin Nov 09 2012

Keywords

Comments

Column 6 of A219002

Examples

			Some solutions for n=3
..0..0..0..0..0..1....0..1..1..0..1..0....0..1..1..1..1..0....0..0..0..1..0..1
..1..0..0..1..0..0....1..0..0..0..0..0....1..0..0..0..0..1....0..0..1..0..0..0
..0..0..0..1..1..0....1..0..1..0..1..1....1..0..1..0..0..0....0..0..1..0..1..1
		

A219001 Unmatched value maps: number of nX7 binary arrays indicating the locations of corresponding elements not equal to any horizontal, diagonal or antidiagonal neighbor in a random 0..2 nX7 array.

Original entry on oeis.org

37, 9019, 966981, 105807897, 12030873701
Offset: 1

Views

Author

R. H. Hardin Nov 09 2012

Keywords

Comments

Column 7 of A219002

Examples

			Some solutions for n=3
..0..0..0..0..1..0..1....0..0..0..0..1..1..1....0..1..0..1..0..0..1
..0..0..0..1..1..0..0....0..0..1..1..1..1..1....0..0..1..1..0..1..1
..0..1..1..0..0..1..0....0..0..1..0..0..0..0....0..1..1..1..1..0..1
		

A219005 Unmatched value maps: number of 4Xn binary arrays indicating the locations of corresponding elements not equal to any horizontal, diagonal or antidiagonal neighbor in a random 0..2 4Xn array.

Original entry on oeis.org

1, 126, 2374, 31857, 462668, 7027671, 105807897, 1583929029, 23732266546, 355842741628, 5335066750849
Offset: 1

Views

Author

R. H. Hardin Nov 09 2012

Keywords

Comments

Row 4 of A219002

Examples

			Some solutions for n=3
..1..1..1....1..0..0....0..1..0....1..1..1....1..0..1....1..0..0....0..0..1
..0..0..1....1..0..1....0..0..0....1..0..0....0..0..0....0..0..1....1..0..0
..1..0..0....1..1..1....1..0..1....1..1..1....1..0..0....1..0..0....0..0..0
..1..0..1....0..0..1....1..0..0....0..0..0....1..1..0....1..0..1....1..0..1
		

A219006 Unmatched value maps: number of 5Xn binary arrays indicating the locations of corresponding elements not equal to any horizontal, diagonal or antidiagonal neighbor in a random 0..2 5Xn array.

Original entry on oeis.org

1, 454, 17776, 461681, 13259232, 401608939, 12030873701, 357976038469
Offset: 1

Views

Author

R. H. Hardin Nov 09 2012

Keywords

Comments

Row 5 of A219002

Examples

			Some solutions for n=3
..0..0..1....1..1..1....0..0..0....0..0..1....1..1..0....1..0..0....1..0..0
..0..0..1....0..0..0....1..1..1....0..0..1....0..0..0....0..1..0....1..0..0
..1..0..1....1..1..1....1..0..1....0..1..1....0..1..0....1..1..1....1..1..0
..1..0..1....1..0..1....0..0..0....1..0..0....1..1..0....0..0..1....1..0..1
..0..1..0....0..1..0....1..0..1....0..0..0....1..0..1....0..0..1....0..1..0
		
Showing 1-10 of 12 results. Next