cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219017 Smallest number k such that k^2 - 1 has exactly n distinct prime factors.

This page as a plain text file.
%I A219017 #42 Sep 18 2023 06:18:40
%S A219017 2,4,11,29,131,419,1429,14629,77141,509081,1456729,22486309,117048931,
%T A219017 1625292241,10326137821,117440297701,1110819807371,8678298841211,
%U A219017 138645880242871,980010587880169
%N A219017 Smallest number k such that k^2 - 1 has exactly n distinct prime factors.
%C A219017 a(14) <= 1625292241. - _Donovan Johnson_, Nov 10 2012
%H A219017 Michael S. Branicky, <a href="/A219017/a219017.py.txt">Python program</a>
%e A219017 a(3) = 11 is the smallest number of the set {k(i)} = {11, 13, 14, 16, 19, 20, ...} where k(i)^2 - 1 contains 3 distinct prime factors.
%e A219017 a(10) = 509081 because 509081^2-1 = 2 ^ 4 * 3 * 5 * 7 * 11 * 13 * 17 * 23 * 31 * 89 with 10 distinct prime factors.
%p A219017 with(numtheory) :for n from 1 to 11 do:ii:=0:for k from 1 to 10^10 while(ii=0) do:x:=k^2-1:y:=factorset(x):n1:=nops(y):if n1=n then ii:=1: printf ( "%d %d \n",n,k):
%p A219017 else fi:od:od:
%t A219017 L = {}; Do[n = 2; While[Length[FactorInteger[n^2 - 1]] != k, n++];  Print@AppendTo[L, n], {k, 15}] (* _Giovanni Resta_, Nov 10 2012 *)
%Y A219017 Cf. A180278.
%K A219017 nonn,hard,more
%O A219017 1,1
%A A219017 _Michel Lagneau_, Nov 09 2012
%E A219017 a(12)-a(13) from _Donovan Johnson_, Nov 10 2012
%E A219017 a(14)-a(17) from _Giovanni Resta_, May 10 2017
%E A219017 a(18) from _Michael S. Branicky_, Feb 08 2023
%E A219017 a(19) from _Michael S. Branicky_, Feb 15 2023
%E A219017 a(20) from _Michael S. Branicky_, Feb 19 2023
%E A219017 Name clarified by _Pontus von Brömssen_, Sep 12 2023