A219026 Number of primes p<=n such that 2n-p and 2n+p-2 are both prime.
0, 0, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 0, 3, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 2, 3, 3, 3, 3, 3, 1, 3, 1, 3, 2, 2, 2, 3, 4, 1, 4, 2, 2, 5, 1, 2, 4, 0, 3, 2, 3, 3, 2, 2, 1, 3, 3, 4, 4, 2, 3, 5, 3, 4, 3, 2, 3, 4, 3, 1, 3, 4, 3, 4, 3, 5, 4, 3, 3, 2, 3, 3, 3, 4, 2, 6, 3, 2, 7, 4, 2
Offset: 1
Keywords
Examples
a(8)=2 since 3 and 5 are the only primes p<=8 with 16-p and 14+p both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..20000.
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588v2.
Programs
-
Mathematica
a[n_]:=a[n]=Sum[If[PrimeQ[2n-Prime[k]]==True&&PrimeQ[2n+Prime[k]-2]==True,1,0],{k,1,PrimePi[n]}] Do[Print[n," ",a[n]],{n,1,20000}] np[n_]:=Count[Prime[Range[PrimePi[n]]],?(AllTrue[{2n-#,2n+#-2},PrimeQ]&)]; Array[np,100] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale, Sep 23 2017 *)
Comments