A219033 Numbers n such that n = x + y, sigma_1(n) = sigma_1(x) + sigma_1(y) and sigma_2(n) = sigma_2(x) + sigma_2(y).
434, 2170, 4774, 5642, 7378, 8246, 9982, 10850, 12586, 16058, 17794, 18662, 20398, 23002, 23870, 25606, 26474, 28210, 29078, 30814, 31682, 34286, 36022, 36890, 38626, 41230, 42098, 43834, 44702, 47306, 49042, 49910, 52514, 54250, 55118, 56854, 59458, 60326
Offset: 1
Keywords
Examples
2140 + 30 = 2170. sigma_1(2140) + sigma_1(30) = 4536 + 72 = 4608 = sigma_1(2170). sigma_2(2140) + sigma_2(30) = 6251700 + 1300 = 6253000 = sigma_2(2170). Hence, 2170 is in the sequence.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Programs
-
JavaScript
function divisorSum(n,x) { c=0; for (i=1;i<=n;i++) if (n%i==0) c+=Math.pow(i,x); return c; } ds=new Array(); for (j=1;j<40001;j++) { ds[j]=new Array(); ds[j][0]=divisorSum(j,1); ds[j][1]=divisorSum(j,2); } a=new Array(); ac=0; for (j=1;j<20000;j++) for (k=1;k<=j;k++) if (ds[j][0]+ds[k][0]==ds[j+k][0] && ds[j][1]+ds[k][1]==ds[j+k][1]) a[ac++]=j+", "+k+" ::: "; a.sort(function(a, b) {return a-b;}); i=0; while(i++
Extensions
a(6) corrected and a(13)-a(38) from Donovan Johnson, Nov 10 2012
Comments