cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219043 Numbers k such that 3^k - 22 is prime.

This page as a plain text file.
%I A219043 #27 Nov 12 2023 11:35:06
%S A219043 3,4,9,13,28,45,46,184,285,688,697,1257,1785,2368,3721,7444,51613
%N A219043 Numbers k such that 3^k - 22 is prime.
%C A219043 a(18) > 2*10^5. - _Robert Price_, Oct 18 2013
%e A219043 3^3 - 22 = 5 (prime), so 3 is in the sequence.
%t A219043 Do[If[PrimeQ[3^n - 22], Print[n]], {n, 10000}]
%o A219043 (PARI) is(n)=isprime(3^n-22) \\ _Charles R Greathouse IV_, Feb 17 2017
%o A219043 (Python)
%o A219043 from sympy import isprime
%o A219043 def ok(n): return isprime(3**n - 22)
%o A219043 print([m for m in range(700) if ok(m)]) # _Michael S. Branicky_, Mar 04 2021
%Y A219043 Cf. Sequences of numbers k such that 3^k + m is prime:
%Y A219043   (m = 2) A051783, (m = -2) A014224, (m = 4) A058958, (m = -4) A058959,
%Y A219043   (m = 8) A217136, (m = -8) A217135, (m = 10) A217137, (m = -10) A217347,
%Y A219043   (m = 14) A219035, (m = -14) A219038, (m = 16) A205647, (m = -16) A219039,
%Y A219043   (m = 20) A219040, (m = -20) A219041, (m = 22) A219042, (m = -22) A219043,
%Y A219043   (m = 26) A219044, (m = -26) A219045, (m = 28) A219046, (m = -28) A219047,
%Y A219043   (m = 32) A219048, (m = -32) A219049, (m = 34) A219050, (m = -34) A219051. Note that if m is a multiple of 3, 3^k + m is also a multiple of 3 (for k greater than 0), and as such isn't prime.
%K A219043 nonn,more
%O A219043 1,1
%A A219043 _Nicolas M. Perrault_, Nov 10 2012
%E A219043 a(17) from _Robert Price_, Oct 18 2013