cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219052 Number of ways to write n = p + q(3 - (-1)^n)/2 with q <= n/2 and p, q, p^2 + q^2 - 1 all prime.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 0, 2, 2, 0, 2, 1, 0, 0, 1, 1, 3, 0, 1, 1, 1, 1, 3, 1, 1, 4, 0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 4, 0, 0, 3, 0, 1, 2, 2, 1, 3, 1, 2, 3, 2, 1, 3, 2, 4, 2, 1, 2, 1, 1, 0, 4, 2, 1, 1, 1, 2, 5, 4, 1, 3, 1, 1, 4, 1, 1, 2, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 10 2012

Keywords

Comments

Conjecture: a(n) > 0 for all n > 784.
This conjecture implies Goldbach's conjecture, Lemoine's conjecture, and that there are infinitely many primes of the form p^2 + q^2 - 1 with p and q both prime.
It has been verified for n up to 10^8.
Zhi-Wei Sun also made the following general conjecture: Let d be any odd integer not congruent to 1 modulo 3. Then, all large even numbers can be written as p + q with p, q, p^2 + q^2 + d all prime. If d is also not divisible by 5, then all large odd numbers can be represented as p + 2q with p, q, p^2 + q^2 + d all prime.

Examples

			a(12) = 1 since {5, 7} is the only prime pair {p, q} for which  p + q = 12, and p^2 + q^2 - 1 is prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[If[PrimeQ[n - (1 + Mod[n, 2])Prime[k]] == True && PrimeQ[Prime[k]^2 + (n - (1 + Mod[n, 2])Prime[k])^2 - 1] == True, 1, 0], {k, 1, PrimePi[n/2]}]; Do[Print[n, " ", a[n]], {n, 1, 20000}]