This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A219121 #12 Nov 13 2012 05:55:28 %S A219121 1,1,-2,-19,-74,-68,1856,22717,182806,1095506,2706452,-62235754, %T A219121 -1630900556,-28213310474,-422792067164,-5747245586467, %U A219121 -68720160772442,-602550199498622,1056275553274100,251539588303778798,9237652624016037908,263685036472764512992 %N A219121 Central terms in rows of triangle A219120. %C A219121 The number of contiguous signs of the terms seems to grow roughly in proportion to the square-root of the number of terms. %H A219121 Paul D. Hanna, <a href="/A219121/b219121.txt">Table of n, a(n) for n = 1..200</a> %F A219121 a(n) = [x^n] (1-x)^(2*n-1) * Sum_{k>=0} k^n *(k+1)^(k-1) * exp(-(k+1)*x) * x^k/k!. %e A219121 Triangle A219120 begins: %e A219121 1; %e A219121 1, 1, -1; %e A219121 1, 5, -2, -2, 1; %e A219121 1, 15, 13, -19, 3, 3, -1; %e A219121 1, 37, 128, -26, -74, 46, -4, -4, 1; %e A219121 1, 83, 679, 755, -654, -68, 230, -90, 5, 5, -1; %e A219121 1, 177, 2866, 9048, 2091, -5741, 1856, 498, -545, 155, -6, -6, 1; ... %e A219121 in which the o.g.f. of row n, R(x,n), is given by: %e A219121 R(x,n) = (1-x)^(2*n-1) * Sum_{k>=0} k^n *(k+1)^(k-1) * exp(-(k+1)*x) * x^k/k!; %e A219121 note that the coefficient of x^n in R(x,n), for n>=1, forms this sequence. %e A219121 The signs of the terms of this sequence begin: %e A219121 +,+, %e A219121 -,-,-,-, %e A219121 +,+,+,+,+, %e A219121 -,-,-,-,-,-,-, %e A219121 +,+,+,+,+,+,+,+,+,+, %e A219121 -,-,-,-,-,-,-,-,-,-,-, %e A219121 +,+,+,+,+,+,+,+,+,+,+,+,+, %e A219121 -,-,-,-,-,-,-,-,-,-,-,-,-,-, %e A219121 +,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+, %e A219121 -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-, %e A219121 +,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+, %e A219121 -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-, %e A219121 +,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+, ... %o A219121 (PARI) {a(n)=polcoeff((1-x)^(2*n-1)*sum(k=0,2*n,(k^n)*(k+1)^(k-1)*x^k/k!*exp(-(k+1)*x +x*O(x^n))),n)} %o A219121 for(n=1,30,print1(a(n),", ")) %Y A219121 Cf. A219120. %K A219121 sign %O A219121 1,3 %A A219121 _Paul D. Hanna_, Nov 13 2012