cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A219136 Unchanging value maps: number of n X 2 binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 n X 2 array.

Original entry on oeis.org

2, 6, 18, 51, 142, 405, 1157, 3289, 9344, 26580, 75621, 215076, 611683, 1739781, 4948421, 14074414, 40030688, 113856507, 323834334, 921058929, 2619701953, 7451032833, 21192445976, 60276171664, 171439240421, 487612482144
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2012

Keywords

Comments

Column 2 of A219142.

Examples

			Some solutions for n=3:
..1..0....0..0....0..0....0..0....1..1....0..0....0..0....0..0....1..1....0..0
..0..0....1..0....0..0....0..0....0..1....0..1....1..0....0..1....1..0....0..0
..0..1....1..1....1..0....0..0....0..0....0..0....0..0....1..1....0..0....1..1
		

Crossrefs

Cf. A219142.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) + 3*a(n-3) + 4*a(n-4) - 2*a(n-5) - 4*a(n-6).
Empirical g.f.: x*(2 + 2*x + 4*x^2 + 3*x^3 - 4*x^4 - 4*x^5) / ((1 + 2*x^2)*(1 - 2*x - 3*x^2 + x^3 + 2*x^4)). - Colin Barker, Mar 10 2018

A219143 Unchanging value maps: number of 2 X n binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 2 X n array.

Original entry on oeis.org

1, 6, 18, 39, 96, 225, 543, 1293, 3096, 7392, 17673, 42228, 100929, 241197, 576441, 1377606, 3292314, 7868187, 18803964, 44939013, 107398431, 256668285, 613403916, 1465955712, 3503443917, 8372776200, 20009848437, 47820940581, 114285841233
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2012

Keywords

Comments

Row 2 of A219142.

Examples

			Some solutions for n=3:
..1..0..0....0..0..0....0..0..1....0..0..1....0..0..1....1..0..1....1..1..1
..0..0..1....1..0..0....1..0..0....1..0..1....0..0..0....0..0..0....1..1..1
		

Crossrefs

Cf. A219142.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) - a(n-3) + 2*a(n-4) for n>5.
Empirical g.f.: x*(1 + 4*x + 5*x^2 - 2*x^3 + 4*x^4) / (1 - 2*x - x^2 + x^3 - 2*x^4). - Colin Barker, Mar 11 2018

A219144 Unchanging value maps: number of 3Xn binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 3Xn array.

Original entry on oeis.org

1, 18, 78, 281, 1072, 4033, 15255, 57963, 220068, 835820, 3172817, 12044346, 45722019, 173574485, 658947323, 2501581220, 9496787730, 36052730049, 136867284190, 519590670019, 1972527813429, 7488329193659, 28428025632710
Offset: 1

Views

Author

R. H. Hardin Nov 12 2012

Keywords

Comments

Row 3 of A219142

Examples

			Some solutions for n=3
..1..0..1....1..0..1....0..0..1....0..0..1....1..0..0....0..0..0....0..0..0
..0..0..1....0..0..1....0..0..1....1..0..1....1..0..0....1..0..1....0..0..1
..1..0..1....0..0..1....0..0..1....1..0..0....0..0..1....0..0..1....1..0..1
		

Formula

Empirical: a(n) = 4*a(n-1) -8*a(n-3) +17*a(n-4) +17*a(n-5) -29*a(n-6) -13*a(n-7) +9*a(n-8) -31*a(n-9) -26*a(n-10) +30*a(n-11) -3*a(n-12) +6*a(n-13) +17*a(n-14) -3*a(n-15) +3*a(n-16) -2*a(n-17) for n>18

A219137 Unchanging value maps: number of n X 3 binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 n X 3 array.

Original entry on oeis.org

4, 18, 78, 331, 1400, 5949, 25277, 107353, 455938, 1936500, 8224877, 34933256, 148370893, 630171269, 2676507659, 11367850562, 48282330086, 205068091043, 870979546682, 3699285278069, 15711863292777, 66732525229601
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2012

Keywords

Comments

Column 3 of A219142.

Examples

			Some solutions for n=3:
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..1....0..0..0....0..0..1
..1..0..1....1..0..1....0..0..1....0..1..0....0..0..1....0..0..0....1..0..0
..0..0..0....1..1..1....1..0..0....1..1..1....0..0..0....0..0..1....0..0..1
		

Crossrefs

Cf. A219142.

Formula

Empirical: a(n) = 4*a(n-1) + a(n-2) + a(n-3) - 12*a(n-5) - 10*a(n-6) + 2*a(n-7) + 4*a(n-8).
Empirical g.f.: x*(4 + 2*x + 2*x^2 - 3*x^3 - 20*x^4 - 12*x^5 + 6*x^6 + 4*x^7) / (1 - 4*x - x^2 - x^3 + 12*x^5 + 10*x^6 - 2*x^7 - 4*x^8). - Colin Barker, Jul 25 2018

A219138 Unchanging value maps: number of nX4 binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 nX4 array.

Original entry on oeis.org

7, 39, 281, 1774, 11385, 73136, 472638, 3050285, 19667721, 126807809, 817795362, 5274346426, 34015377046, 219367395594, 1414720693245, 9123720789554, 58840106012423, 379467286876826, 2447231592206585, 15782503349398343
Offset: 1

Views

Author

R. H. Hardin Nov 12 2012

Keywords

Comments

Column 4 of A219142

Examples

			Some solutions for n=3
..1..0..1..0....0..0..0..1....0..0..0..1....1..0..0..0....0..0..0..1
..0..0..0..0....0..0..0..0....0..0..0..1....0..0..0..0....0..0..0..0
..0..1..0..1....1..1..0..0....0..0..0..1....1..0..1..0....0..0..1..0
		

A219140 Unchanging value maps: number of nX6 binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 nX6 array.

Original entry on oeis.org

21, 225, 4033, 59127, 872437, 12867295, 191707377, 2851740545, 42351530487, 628917557052, 9343657589877, 138832484811480, 2062679454951201, 30644671161036036, 455284849342096283, 6764205083943142280
Offset: 1

Views

Author

R. H. Hardin Nov 12 2012

Keywords

Comments

Column 6 of A219142

Examples

			Some solutions for n=3
..0..0..0..0..1..0....1..1..1..0..0..1....1..1..0..0..0..0....1..0..0..0..0..0
..0..0..1..0..0..0....1..1..1..0..0..0....1..0..0..0..1..0....0..0..0..1..0..0
..0..0..0..0..1..0....1..1..1..0..0..1....0..0..0..0..0..0....0..0..0..0..0..1
		

A219141 Unchanging value maps: number of nX7 binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 nX7 array.

Original entry on oeis.org

37, 543, 15255, 341648, 7640541, 170792866, 3862325048, 87205791997, 1964627314453, 44248075120119, 997182574575448, 22477181379388546, 506606543634822152, 11417623925479199496, 257329160512779838675
Offset: 1

Views

Author

R. H. Hardin Nov 12 2012

Keywords

Comments

Column 7 of A219142

Examples

			Some solutions for n=3
..0..0..1..0..1..0..0....0..0..0..1..1..1..1....0..0..0..0..0..1..0
..1..0..0..0..0..0..0....0..0..0..0..1..0..1....0..1..0..1..0..0..0
..0..0..0..0..0..1..0....0..0..1..0..0..0..1....1..1..0..0..0..0..0
		

A219135 Unchanging value maps: number of n X n binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 n X n array.

Original entry on oeis.org

1, 6, 78, 1774, 101600, 12867295, 3862325048, 2678391894154
Offset: 1

Views

Author

R. H. Hardin Nov 12 2012

Keywords

Comments

Diagonal of A219142

Examples

			Some solutions for n=3
..1..0..1....1..0..1....0..0..0....0..0..1....0..0..1....0..0..0....1..0..0
..0..0..0....0..0..1....0..0..0....0..0..1....0..0..0....0..1..0....1..0..0
..0..0..0....1..0..0....1..0..0....0..0..1....1..0..0....1..1..1....0..0..1
		

A219139 Unchanging value maps: number of nX5 binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 nX5 array.

Original entry on oeis.org

12, 96, 1072, 10505, 101600, 989947, 9702349, 94937311, 927766394, 9067631046, 88653591037, 866785617482, 8474253980191, 82848823383647, 809985234784217
Offset: 1

Views

Author

R. H. Hardin Nov 12 2012

Keywords

Comments

Column 5 of A219142

Examples

			Some solutions for n=3
..1..1..0..1..0....0..0..0..1..0....0..0..0..0..1....1..1..0..0..0
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..1..0..1..0
..0..0..0..0..0....1..0..0..1..0....1..0..0..0..1....0..0..0..0..0
		

A219145 Unchanging value maps: number of 4Xn binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 4Xn array.

Original entry on oeis.org

1, 51, 331, 1774, 10505, 59127, 341648, 1963817, 11341895, 65406069, 377314947, 2175983774, 12550566460, 72389111386, 417539600863, 2408347532016, 13891206637891
Offset: 1

Views

Author

R. H. Hardin Nov 12 2012

Keywords

Comments

Row 4 of A219142

Examples

			Some solutions for n=3
..0..0..1....0..0..0....0..0..1....0..1..0....0..0..0....1..0..0....0..0..0
..0..0..1....0..0..1....1..0..0....0..0..0....0..0..1....1..0..0....0..0..1
..1..0..0....1..0..0....1..0..1....1..0..1....1..0..0....1..0..0....1..0..1
..0..0..1....0..0..0....1..1..1....0..0..1....1..0..1....1..0..1....1..1..1
		
Showing 1-10 of 13 results. Next