This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A219174 #33 Jul 16 2023 10:56:50 %S A219174 1,2,3,4,6,7,8,9,12,14,16,18,21,24,27,28,31,32,36,42,48,49,54,56,62, %T A219174 63,64,72,81,84,93,96,98,108,112,124,126,127,128,144,147,162,168,186, %U A219174 189,192,196,216,217,224,243,248,252,254,256,279,288,294,324,336,343,372 %N A219174 Numbers that have no other prime factors than 2 and/or Mersenne primes. %C A219174 If k is in the sequence, then so is 2*k. %C A219174 From _Antti Karttunen_, Jul 16 2023: (Start) %C A219174 The original definition was "Numbers whose prime factors are either 2 or Mersenne primes". The new definition admits also {1}. %C A219174 Multiplicative semigroup. Primitive terms are {1, 2} U A000668. %C A219174 (End) %H A219174 Antti Karttunen, <a href="/A219174/b219174.txt">Table of n, a(n) for n = 1..10001</a> (original 10000 initial terms from Amiram Eldar) %F A219174 Sum_{n>=1} 1/a(n) = 2 * Product_{p in A000668} p/(p-1) = 3.6458502419452069302... - _Amiram Eldar_, Jan 09 2021 %t A219174 seq[max_] := Module[{e = Floor @ Log2[max + 1], s = {1}, es, ps, n, p, m}, es = Select[MersennePrimeExponent @ Range[20], # <= e &]; ps = Join[{2}, 2^es - 1]; n = Length[ps]; Do[p = ps[[k]]; m = Floor @ Log[p, max]; s = Select[Union @ Flatten@Outer[Times, s, p^Range[0, m]], # <= max &], {k, 1, n}]; s]; seq[10^3] (* _Amiram Eldar_, Jan 09 2021 *) %o A219174 (PARI) isokp(p) = my(q); (p==2) || (isprimepower(p+1, &q) && (q==2)); %o A219174 isok(m) = ((1==m) || vecmin(apply(isokp, factor(m)[, 1]))); \\ _Michel Marcus_, Jan 09 2021, edited by _Antti Karttunen_, Jul 16 2023 %o A219174 (PARI) isok(n) = A364252(n); \\ _Antti Karttunen_, Jul 16 2023 %Y A219174 Cf. A000668, A056652, A108319, A364252 (characteristic function). %Y A219174 Positions of 1's in A336467. %Y A219174 Subsequences: A054784, A335431. %K A219174 nonn %O A219174 1,2 %A A219174 _Jon Perry_, Nov 13 2012 %E A219174 a(1) = 1 prepended, and definition changed accordingly by _Antti Karttunen_, Jul 16 2023