cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219185 Number of prime pairs {p,q} (p>q) with 3(p-q)-1 and 3(p-q)+1 both prime such that p+(1+(n mod 2))q=n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 2, 1, 1, 1, 2, 1, 0, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 2, 0, 1, 2, 2, 0, 2, 2, 0, 2, 1, 0, 3, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 4, 1, 1, 1, 0, 1, 1, 2, 1, 1, 3, 1, 5, 2, 1, 2, 1, 0, 2, 0, 2, 3, 4, 2, 3, 3, 2, 2, 1, 3, 2, 1, 1, 2, 0, 0, 2, 1, 3, 2, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 13 2012

Keywords

Comments

Conjecture: a(n)>0 for all odd n>4676 and even n>30986.
This conjecture has been verified for n up to 5*10^7. It implies Goldbach's conjecture, Lemoine's conjecture and the twin prime conjecture.

Examples

			a(11)=1 since 11=5+2*3, and both 3(5-3)-1=5 and 3(5-3)+1=7 are prime.
a(16)=2 since 16=11+5=13+3, and 3(11-5)-1, 3(11-5)+1, 3(13-3)-1, 3(13-3)+1 are all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[If[PrimeQ[n-(1+Mod[n,2])Prime[k]]==True&&PrimeQ[3(n-(2+Mod[n,2])Prime[k])-1]==True&&PrimeQ[3(n-(2+Mod[n,2])Prime[k])+1]==True,1,0],
    {k,1,PrimePi[(n-1)/(2+Mod[n,2])]}]
    Do[Print[n," ",a[n]],{n,1,100000}]
  • PARI
    a(n)=if(n%2, aOdd(n), aEven(n))
    aOdd(n)=my(s); forprime(q=2,(n-1)\3, my(p=n-2*q); if(isprime(n-2*q) && isprime(3*n-9*q-1) && isprime(3*n-9*q+1), s++)); s
    aEven(n)=my(s); forprime(q=2,n/2, if(isprime(n-q) && isprime(3*n-6*q-1) && isprime(3*n-6*q+1), s++)); s
    \\ Charles R Greathouse IV, Jul 31 2016