cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219312 Composition of the binomial transform of Fibonacci numbers and the Catalan transform of Fibonacci numbers.

This page as a plain text file.
%I A219312 #14 Nov 22 2024 06:25:24
%S A219312 0,1,4,15,59,243,1034,4501,19920,89281,404184,1844789,8477571,
%T A219312 39183625,182010366,849115811,3976405347,18684473203,88060677880,
%U A219312 416162484693,1971567963673,9361218368921,44539107835094,212308063827055,1013779444844754,4848597239921803
%N A219312 Composition of the binomial transform of Fibonacci numbers and the Catalan transform of Fibonacci numbers.
%H A219312 G. C. Greubel, <a href="/A219312/b219312.txt">Table of n, a(n) for n = 0..1000</a>
%H A219312 Paul Barry, <a href="http://repository.wit.ie/201/1/CatalanTrans.pdf">A Catalan transform and related transformations on integer sequences</a>, pp. 20-22.
%F A219312 G.f.: (sqrt(5*x-1) - sqrt(x-1))/(2*((x-1)*sqrt(5*x-1) - x*sqrt(x-1))).
%F A219312 a(n) ~ 5^(n+5/2)/(8*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Sep 19 2013
%F A219312 D-finite with recurrence n*a(n) +4*(-3*n+2)*a(n-1) +(45*n-58)*a(n-2) +2*(-27*n+46)*a(n-3) +20*(n-2)*a(n-4)=0. - _R. J. Mathar_, Nov 22 2024
%t A219312 CoefficientList[Series[(Sqrt[5*x-1] - Sqrt[x-1])/(2*((x-1)*Sqrt[5*x-1] - x*Sqrt[x-1])), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Sep 19 2013 *)
%o A219312 (PARI) Vec((sqrt(5*x-1) - sqrt(x-1))/(2*((x-1)*sqrt(5*x-1) - x*sqrt(x-1))) + O(x^25)) \\ _G. C. Greubel_, Jan 28 2017
%Y A219312 Cf. A000045.
%K A219312 easy,nonn
%O A219312 0,3
%A A219312 _Arkadiusz Wesolowski_, Nov 17 2012