This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A219312 #14 Nov 22 2024 06:25:24 %S A219312 0,1,4,15,59,243,1034,4501,19920,89281,404184,1844789,8477571, %T A219312 39183625,182010366,849115811,3976405347,18684473203,88060677880, %U A219312 416162484693,1971567963673,9361218368921,44539107835094,212308063827055,1013779444844754,4848597239921803 %N A219312 Composition of the binomial transform of Fibonacci numbers and the Catalan transform of Fibonacci numbers. %H A219312 G. C. Greubel, <a href="/A219312/b219312.txt">Table of n, a(n) for n = 0..1000</a> %H A219312 Paul Barry, <a href="http://repository.wit.ie/201/1/CatalanTrans.pdf">A Catalan transform and related transformations on integer sequences</a>, pp. 20-22. %F A219312 G.f.: (sqrt(5*x-1) - sqrt(x-1))/(2*((x-1)*sqrt(5*x-1) - x*sqrt(x-1))). %F A219312 a(n) ~ 5^(n+5/2)/(8*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Sep 19 2013 %F A219312 D-finite with recurrence n*a(n) +4*(-3*n+2)*a(n-1) +(45*n-58)*a(n-2) +2*(-27*n+46)*a(n-3) +20*(n-2)*a(n-4)=0. - _R. J. Mathar_, Nov 22 2024 %t A219312 CoefficientList[Series[(Sqrt[5*x-1] - Sqrt[x-1])/(2*((x-1)*Sqrt[5*x-1] - x*Sqrt[x-1])), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Sep 19 2013 *) %o A219312 (PARI) Vec((sqrt(5*x-1) - sqrt(x-1))/(2*((x-1)*sqrt(5*x-1) - x*sqrt(x-1))) + O(x^25)) \\ _G. C. Greubel_, Jan 28 2017 %Y A219312 Cf. A000045. %K A219312 easy,nonn %O A219312 0,3 %A A219312 _Arkadiusz Wesolowski_, Nov 17 2012