cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219314 Composition of the inverse binomial transform of Fibonacci numbers and the Catalan transform of Fibonacci numbers.

This page as a plain text file.
%I A219314 #20 Apr 12 2023 11:13:25
%S A219314 0,1,0,3,3,13,26,77,192,529,1412,3873,10603,29315,81318,226763,634627,
%T A219314 1782637,5022840,14193457,40211105,114191159,324981030,926720807,
%U A219314 2647513282,7576475383,21716189676,62336237007,179182653117,515717424109,1486119467026
%N A219314 Composition of the inverse binomial transform of Fibonacci numbers and the Catalan transform of Fibonacci numbers.
%H A219314 Fung Lam, <a href="/A219314/b219314.txt">Table of n, a(n) for n = 0..2000</a>
%H A219314 Paul Barry, <a href="http://repository.wit.ie/201/1/CatalanTrans.pdf">A Catalan transform and related transformations on integer sequences</a>, pp. 20-22.
%H A219314 S. B. Ekhad and M. Yang, <a href="http://sites.math.rutgers.edu/~zeilberg/tokhniot/oMathar1maple12.txt">Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences</a>, (2017).
%F A219314 G.f.: ((1+2*x)*sqrt(1-2*x-3*x^2) - 1 + x + 2*x^2)/(2*(1+x)*(1-2*x-4*x^2)).
%F A219314 Asymptotics: a(n) ~ 3^(n+2)*5/(8*sqrt(3*Pi*n^3)). - _Fung Lam_, Apr 07 2014
%F A219314 Conjecture: n*a(n) -2*n*a(n-1) +11*(-n+2)*a(n-2) +4*(2*n-5)*a(n-3) +8*(5*n-17)*a(n-4) +24*(n-4)*a(n-5)=0. - _R. J. Mathar_, Jun 14 2016
%F A219314 Conjecture: n*(5*n-7)*a(n) -4*(5*n^2-12*n+6)*a(n-1) -(15*n^2-11*n-30) *a(n-2) +2*(35*n^2-119*n+66)*a(n-3) +12*(n-3)*(5*n2)*a(n-4)=0. - _R. J. Mathar_, Jun 14 2016
%Y A219314 Cf. A000045, A219312.
%K A219314 easy,nonn
%O A219314 0,4
%A A219314 _Arkadiusz Wesolowski_, Nov 17 2012