cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219342 O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n * A(n^3*x)^n/n! * exp(-n*x*A(n^3*x)).

This page as a plain text file.
%I A219342 #6 Dec 24 2012 17:28:26
%S A219342 1,1,2,33,939,101175,26230876,21032800086,48319626581926,
%T A219342 319633065306440005,6299181667747767151873,
%U A219342 359980854813102654362716667,60552379844778585329083453881153,30125614945616982039421647789900799744,43971297878008421196972637327280065832735828
%N A219342 O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n * A(n^3*x)^n/n! * exp(-n*x*A(n^3*x)).
%C A219342 Compare to the LambertW identity:
%C A219342 Sum_{n>=0} n^n * x^n * G(x)^n/n! * exp(-n*x*G(x)) = 1/(1 - x*G(x)).
%e A219342 O.g.f.: A(x) = 1 + x + 2*x^2 + 33*x^3 + 939*x^4 + 101175*x^5 + 26230876*x^6 +...
%e A219342 where
%e A219342 A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^2*x^2*A(2^3*x)^2/2!*exp(-2*x*A(2^3*x)) + 3^3*x^3*A(3^3*x)^3/3!*exp(-3*x*A(3^3*x)) + 4^4*x^4*A(4^3*x)^4/4!*exp(-4*x*A(4^3*x)) + 5^5*x^5*A(5^3*x)^5/5!*exp(-5*x*A(5^3*x)) +...
%e A219342 simplifies to a power series in x with integer coefficients.
%o A219342 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k^k*x^k*subst(A,x,k^3*x)^k/k!*exp(-k*x*subst(A,x,k^3*x)+x*O(x^n))));polcoeff(A,n)}
%o A219342 for(n=0,25,print1(a(n),", "))
%Y A219342 Cf. A218672, A218681, A185029, A219343, A217900.
%K A219342 nonn
%O A219342 0,3
%A A219342 _Paul D. Hanna_, Nov 18 2012