cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219374 Triangle of F(n,r) of r-geometric numbers, 1 <= r <= n.

Original entry on oeis.org

1, 3, 2, 13, 10, 6, 75, 62, 42, 24, 541, 466, 342, 216, 120, 4683, 4142, 3210, 2184, 1320, 720, 47293, 42610, 34326, 24696, 15960, 9360, 5040, 545835, 498542, 413322, 310344, 211560, 131760, 75600, 40320, 7087261, 6541426, 5544342, 4304376, 3063000, 2005200, 1214640, 685440, 362880, 102247563, 95160302
Offset: 1

Views

Author

R. J. Mathar, Nov 19 2012

Keywords

Examples

			[1] 1;
[2] 3, 2;
[3] 13, 10, 6;
[4] 75, 62, 42, 24;
[5] 541, 466, 342, 216, 120;
[6] 4683, 4142, 3210, 2184, 1320, 720;
		

Crossrefs

Cf. A008277 {n over k}_1, A143494 {n over k}_2, A143495 {n over k}_3, A000670 (first column).

Programs

  • Maple
    Stirr := proc(n,k,r)
        option remember;
        if n < r then
            0;
        elif n = r then
            if k = r then
                1 ;
            else
                0 ;
            end if;
        else
            procname(n-1,k-1,r) + k*procname(n-1,k,r) ;
        end if;
    end proc:
    A := proc(n,r)
        add( k!*Stirr(n,k,r),k=0..n) ;
    end proc:
    seq(seq( A(n,r),r=1..n),n=1..12) ;
  • Mathematica
    Stirr[n_, k_, r_] := Stirr[n, k, r] = Which[n < r, 0, n == r, If[k == r, 1, 0], True, Stirr[n-1, k-1, r] + k*Stirr[n-1, k, r]]; a[n_, r_] := Sum[ k!*Stirr[n, k, r], {k, 0, n}]; Table[Table[a[n, r], {r, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 10 2014, translated from Maple *)
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, r], {n, 1, 10}, {r, 1, n}] // Flatten (* Jean-François Alcover, Mar 30 2016 *)
  • Sage
    @CachedFunction
    def stirling_number2r(n, k, r) :
        if n < r: return 0
        if n == r: return 1 if k == r else 0
        return stirling_number2r(n-1,k-1,r)+ k*stirling_number2r(n-1,k,r)
    def A219374(n, r):
        return add(factorial(k)*stirling_number2r(n, k, r) for k in (0..n))
    for n in (1..6):
        print([A219374(n, r) for r in (1..n)]) # Peter Luschny, Nov 19 2012

Formula

F(n,r) = Sum_{k=0..n} {n over k}_r *k!.