cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A219405 Unmatched value maps: number of n X 3 binary arrays indicating the locations of corresponding elements not equal to any horizontal or antidiagonal neighbor in a random 0..2 n X 3 array.

Original entry on oeis.org

4, 28, 181, 1180, 7687, 50077, 326233, 2125270, 13845268, 90196219, 587591326, 3827916001, 24937299865, 162456261409, 1058335787620, 6894622770400, 44915634248581, 292606900638904, 1906213721217931, 12418199102692513
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2012

Keywords

Comments

Column 3 of A219410.

Examples

			Some solutions for n=3:
..1..0..0....1..0..0....1..0..0....0..0..1....1..0..1....1..1..1....0..0..0
..1..0..1....1..1..0....1..0..1....0..1..0....0..0..0....1..1..1....0..0..0
..0..0..0....0..0..0....1..1..1....0..0..1....1..0..0....1..1..1....0..1..1
		

Crossrefs

Cf. A219410.

Formula

Empirical: a(n) = 4*a(n-1) + 15*a(n-2) + 9*a(n-3).
Empirical g.f.: x*(2 + 3*x)^2 / (1 - 4*x - 15*x^2 - 9*x^3). - Colin Barker, Jul 26 2018

A219406 Unmatched value maps: number of n X 4 binary arrays indicating the locations of corresponding elements not equal to any horizontal or antidiagonal neighbor in a random 0..2 n X 4 array.

Original entry on oeis.org

7, 98, 1199, 14737, 181089, 2225293, 27345143, 336026564, 4129209727, 50741147949, 623524656508, 7662085181924, 94154334887381, 1157000812187473, 14217623447617101, 174711041141292808, 2146909292479553912
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2012

Keywords

Comments

Column 4 of A219410.

Examples

			Some solutions for n=3:
..1..1..1..1....1..0..1..1....1..1..0..0....1..0..0..0....1..0..0..0
..1..0..0..0....0..1..0..1....1..0..0..1....1..0..1..1....1..0..1..1
..1..0..0..0....1..0..1..1....1..0..1..1....0..0..0..1....0..1..1..1
		

Crossrefs

Cf. A219410.

Formula

Empirical: a(n) = 7*a(n-1) + 57*a(n-2) + 96*a(n-3) + 27*a(n-4) - 11*a(n-5) - 4*a(n-6).
Empirical g.f.: x*(1 + 2*x)*(7 + 35*x + 44*x^2 - 2*x^3 - 6*x^4) / (1 - 7*x - 57*x^2 - 96*x^3 - 27*x^4 + 11*x^5 + 4*x^6). - Colin Barker, Jul 26 2018

A219407 Unmatched value maps: number of nX5 binary arrays indicating the locations of corresponding elements not equal to any horizontal or antidiagonal neighbor in a random 0..2 nX5 array.

Original entry on oeis.org

12, 351, 8173, 193116, 4560446, 107701719, 2543481662, 60067211485, 1418553120783, 33500701298909, 791156061757424, 18684024494159794, 441243879877927791, 10420461699586486378, 246090715301965835785
Offset: 1

Views

Author

R. H. Hardin Nov 19 2012

Keywords

Comments

Column 5 of A219410

Examples

			Some solutions for n=3
..1..0..0..1..1....1..1..0..1..1....0..0..1..1..1....1..1..0..0..1
..1..1..0..0..0....1..0..0..0..0....1..1..0..0..1....0..0..0..0..1
..1..0..1..1..1....1..0..0..0..0....1..0..1..0..0....0..0..0..0..0
		

Formula

Empirical: a(n) = 12*a(n-1) +230*a(n-2) +999*a(n-3) +1175*a(n-4) -1025*a(n-5) -1129*a(n-6) +1240*a(n-7) -405*a(n-8) +45*a(n-9) for n>10

A219408 Unmatched value maps: number of nX6 binary arrays indicating the locations of corresponding elements not equal to any horizontal or antidiagonal neighbor in a random 0..2 nX6 array.

Original entry on oeis.org

21, 1261, 57097, 2633596, 121641579, 5618116265, 259468310384, 11983486642214, 553453107750115, 25561051456876291, 1180528707338785094, 54522328912450097473, 2518095766994664668337, 116297422017630310505820
Offset: 1

Views

Author

R. H. Hardin Nov 19 2012

Keywords

Comments

Column 6 of A219410

Examples

			Some solutions for n=3
..1..0..1..1..0..0....0..0..1..0..1..0....1..0..1..0..0..0....1..0..1..0..0..1
..0..0..0..1..1..1....0..0..0..1..0..1....0..1..0..0..0..0....0..0..1..0..0..1
..0..1..0..0..0..0....1..1..1..0..0..0....1..0..0..0..0..0....1..1..0..0..1..1
		

Formula

Empirical: a(n) = 21*a(n-1) +950*a(n-2) +9306*a(n-3) +26031*a(n-4) -50016*a(n-5) -214765*a(n-6) +276749*a(n-7) +349461*a(n-8) -523220*a(n-9) -71125*a(n-10) +294741*a(n-11) -112428*a(n-12) +11664*a(n-13) for n>14

A219409 Unmatched value maps: number of nX7 binary arrays indicating the locations of corresponding elements not equal to any horizontal or antidiagonal neighbor in a random 0..2 nX7 array.

Original entry on oeis.org

37, 4523, 398375, 35794147, 3227238239, 290895472306, 26219581585508, 2363313103579962, 213017529066100563, 19200373208853887323, 1730628931949055584941, 155990537505981270461154
Offset: 1

Views

Author

R. H. Hardin Nov 19 2012

Keywords

Comments

Column 7 of A219410

Examples

			Some solutions for n=3
..0..0..1..0..0..0..0....0..0..1..1..0..1..1....0..0..0..1..1..0..0
..0..0..1..0..1..0..0....0..0..0..0..0..0..1....0..1..0..0..0..1..0
..0..1..1..0..0..1..1....1..0..1..0..1..0..0....1..1..0..0..1..0..1
		

Formula

Empirical: a(n) = 37*a(n-1) +3825*a(n-2) +81558*a(n-3) +510200*a(n-4) -2139740*a(n-5) -24964195*a(n-6) +44570360*a(n-7) +423494493*a(n-8) -1028219843*a(n-9) -2247233985*a(n-10) +9983856169*a(n-11) -7627675319*a(n-12) -13359810842*a(n-13) +28791113562*a(n-14) -18765233198*a(n-15) +2128700109*a(n-16) +2355058186*a(n-17) -585137197*a(n-18) -134608755*a(n-19) +39387120*a(n-20) +3106800*a(n-21) -864000*a(n-22) for n>24

A219411 Unmatched value maps: number of 2 X n binary arrays indicating the locations of corresponding elements not equal to any horizontal or antidiagonal neighbor in a random 0..2 2 X n array.

Original entry on oeis.org

1, 7, 28, 98, 351, 1261, 4523, 16233, 58268, 209132, 750597, 2693993, 9669101, 34703683, 124556124, 447048462, 1604516243, 5758821685, 20669175143, 74184412085, 266257698140, 955634207080, 3429897967721, 12310358902801
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2012

Keywords

Comments

Row 2 of A219410.

Examples

			Some solutions for n=3:
..0..0..1....0..0..1....0..0..0....0..0..0....0..0..0....1..0..0....1..1..1
..1..1..1....1..0..0....0..0..0....1..0..0....1..0..1....0..0..1....1..0..0
		

Crossrefs

Cf. A219410.

Formula

Empirical: a(n) = 4*a(n-1) - 3*a(n-2) + 6*a(n-3) - 3*a(n-4) + 4*a(n-5).
Empirical g.f.: x*(1 + 3*x + 3*x^2 + x^3 + 4*x^4) / ((1 - x + x^2)*(1 - 3*x - x^2 - 4*x^3)). - Colin Barker, Jul 26 2018

A219412 Unmatched value maps: number of 3 X n binary arrays indicating the locations of corresponding elements not equal to any horizontal or antidiagonal neighbor in a random 0..2 3 X n array.

Original entry on oeis.org

1, 21, 181, 1199, 8173, 57097, 398375, 2773933, 19314785, 134507787, 936720513, 6523315045, 45428247915, 316361693953, 2203138855813, 15342630706087, 106845881585421, 744073337324881, 5181717103636911, 36085410931557557
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2012

Keywords

Comments

Row 3 of A219410.

Examples

			Some solutions for n=3
..1..1..0....1..1..0....1..1..1....1..1..0....1..1..0....1..1..1....1..1..0
..1..0..0....1..0..1....0..0..0....0..0..1....1..0..1....0..0..0....1..0..0
..0..1..1....1..0..0....1..0..0....1..1..1....0..0..1....0..1..1....0..0..0
		

Crossrefs

Cf. A219410.

Formula

Empirical: a(n) = 8*a(n-1) -14*a(n-2) +52*a(n-3) -48*a(n-4) +110*a(n-5) -51*a(n-6) +60*a(n-7) +52*a(n-8) -120*a(n-9) -20*a(n-10) +32*a(n-11).

A219413 Unmatched value maps: number of 4Xn binary arrays indicating the locations of corresponding elements not equal to any horizontal or antidiagonal neighbor in a random 0..2 4Xn array.

Original entry on oeis.org

1, 65, 1180, 14737, 193116, 2633596, 35794147, 484744488, 6565497170, 88948580449, 1205066512034, 16325845207244, 221177055650826, 2996434981248536, 40594730646344051, 549964241638455480
Offset: 1

Views

Author

R. H. Hardin Nov 19 2012

Keywords

Comments

Row 4 of A219410

Examples

			Some solutions for n=3
..0..0..1....0..0..0....0..0..1....0..0..1....0..0..1....0..0..0....0..0..1
..0..1..1....1..0..1....0..1..1....0..0..1....0..0..0....0..0..0....1..1..0
..0..0..0....0..1..1....1..1..0....1..1..0....1..0..0....1..0..0....0..0..1
..1..0..1....0..0..0....1..0..1....1..0..1....1..0..0....0..0..0....1..1..1
		

Formula

Empirical: a(n) = 16*a(n-1) -65*a(n-2) +488*a(n-3) -1151*a(n-4) +5482*a(n-5) -7699*a(n-6) +23952*a(n-7) -11275*a(n-8) +4326*a(n-9) +78090*a(n-10) -207624*a(n-11) -138747*a(n-12) +498504*a(n-13) +170692*a(n-14) -650696*a(n-15) -185632*a(n-16) +542208*a(n-17) +117248*a(n-18) -278528*a(n-19) -32768*a(n-20) +65536*a(n-21)

A219414 Unmatched value maps: number of 5Xn binary arrays indicating the locations of corresponding elements not equal to any horizontal or antidiagonal neighbor in a random 0..2 5Xn array.

Original entry on oeis.org

1, 200, 7687, 181089, 4560446, 121641579, 3227238239, 85112947762, 2245268308652, 59261110503227, 1564126144398995, 41281591776574486, 1089532969597092827, 28755799092752402466, 758945504939672363597
Offset: 1

Views

Author

R. H. Hardin Nov 19 2012

Keywords

Comments

Row 5 of A219410

Examples

			Some solutions for n=3
..0..0..1....1..0..0....0..0..1....0..0..0....1..1..1....1..1..0....1..1..1
..0..0..0....1..0..0....1..0..1....0..0..0....1..1..1....0..0..0....1..1..1
..1..0..0....1..0..0....0..0..0....1..0..1....0..0..1....1..1..0....1..1..0
..0..1..0....0..0..1....0..1..0....0..1..0....0..1..1....0..0..0....0..0..0
..0..0..1....0..0..1....1..0..1....0..0..1....1..1..1....1..0..1....0..1..1
		

A219404 Unmatched value maps: number of n X n binary arrays indicating the locations of corresponding elements not equal to any horizontal or antidiagonal neighbor in a random 0..2 n X n array.

Original entry on oeis.org

1, 7, 181, 14737, 4560446, 5618116265, 26219581585508, 459750729826328790
Offset: 1

Views

Author

R. H. Hardin Nov 19 2012

Keywords

Comments

Diagonal of A219410

Examples

			Some solutions for n=3
..1..0..1....1..0..1....0..0..0....1..1..1....1..0..0....0..0..0....0..0..1
..0..1..0....0..0..0....1..1..1....1..0..0....1..0..1....1..1..1....0..1..0
..0..0..0....1..0..1....0..0..0....1..0..1....0..0..0....1..0..0....0..0..1
		
Showing 1-10 of 12 results. Next