A219429 Highest prime primitive root (less than p) for the n-th prime p. (or 0 if none exists).
0, 2, 3, 5, 7, 11, 11, 13, 19, 19, 17, 19, 29, 29, 43, 41, 47, 59, 61, 67, 59, 59, 79, 83, 83, 89, 101, 103, 103, 107, 109, 127, 131, 109, 139, 109, 151, 149, 163, 131, 167, 179, 181, 167, 179, 197, 191, 173, 223, 223, 227, 227, 227, 239, 251, 257, 257
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:=proc(n) local p,k; p:= ithprime(n); for k from p-1 to 1 by -1 do if numtheory:-order(k,p) = p-1 and isprime(k) then return k fi od; 0 end proc; map(f, [$1..100]); # Robert Israel, Apr 11 2021
-
Mathematica
Reap[For[p = 2, p<1000, p = NextPrime[p], s = Select[PrimitiveRootList[p], PrimeQ]; Sow[If[s == {}, 0, Last[s]]]]][[2, 1]] (* Jean-François Alcover, Sep 03 2016 *)
-
PARI
forprime(i=2,600,p=0;for(q=1,i-1,if(znorder(Mod(q,i))==eulerphi(i)&&isprime(q),p=q));print1(p","))