This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A219434 #15 Feb 28 2022 15:05:56 %S A219434 1966081,12767708,7756710936577,166762837500004,12767708, %T A219434 27471403862610413838,31057143398401,340744843326260,166762837500004, %U A219434 22895635022104088254,7756710936577,766556623996809099695470878,27471403862610413838,166762837500004,62114286796801 %N A219434 a(n) is the maximum number m such that A219365(m) is not divisible by n. %C A219434 The second article by Myerson provides a Maple algorithm to compute a(n) when omega(n)=1. When omega(n) > 1, the maximum of a(p_i^n_i), with n = Product(p_i^n_i), is used. %C A219434 Bachman and Kessler (2004) provide a table of a(n) for n < 100 being prime or a power of prime. %H A219434 G. Bachman, <a href="http://dx.doi.org/10.1006/jnth.1997.2098">On divisibility properties of certain multinomial coefficients</a>, Journal of Number Theory, Volume 63, Issue 2, April 1997, Pages 244-255. %H A219434 G. Bachman and T. Kessler, <a href="http://dx.doi.org/10.1016/j.jnt.2003.12.001">On divisibility properties of certain multinomial coefficients—II</a>, Journal of Number Theory, Volume 106, Issue 1, May 2004, Pages 1-12. %H A219434 G. Myerson, <a href="http://dx.doi.org/10.1006/jnth.1994.1054">What the Least Common Multiple Divides</a>, Journal of Number Theory, Volume 48, Issue 1, July 1994, Pages 80-87. %H A219434 G. Myerson and J. W. Sander, <a href="http://dx.doi.org/10.1006/jnth.1996.0138">What the Least Common Multiple Divides, II</a>, Journal of Number Theory, Volume 61, Issue 1, November 1996, Pages 67-84. %Y A219434 Cf. A219365. %K A219434 nonn %O A219434 2,1 %A A219434 _Michel Marcus_, Nov 20 2012