A219437 Unmatched value maps: number of nX4 binary arrays indicating the locations of corresponding elements not equal to any horizontal, diagonal or antidiagonal neighbor in a random 0..1 nX4 array.
7, 39, 281, 1750, 11283, 72272, 465400, 2995163, 19264275, 123892153, 796864416, 5125652937, 32969253934, 212061980660, 1364004538375, 8773442559359, 56431907119815, 362977142538622, 2334713999344447, 15017169783617850
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..0..0..0....0..0..1..1....0..0..0..0....0..0..0..1....1..0..0..0 ..0..0..0..1....1..0..0..0....1..0..0..1....0..0..0..0....0..0..0..0 ..1..0..0..1....1..0..0..0....1..0..0..0....1..0..0..1....0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..109
Formula
Empirical: a(n) = 8*a(n-1) -12*a(n-2) +6*a(n-3) +77*a(n-4) -184*a(n-5) -385*a(n-6) +137*a(n-7) +1716*a(n-8) +983*a(n-9) -3491*a(n-10) -525*a(n-11) +2567*a(n-12) -7634*a(n-13) +5725*a(n-14) +1489*a(n-15) +3574*a(n-16) +1516*a(n-17) -12799*a(n-18) +706*a(n-19) -3864*a(n-20) +7628*a(n-21) +8580*a(n-22) -6068*a(n-23) -1312*a(n-24) +160*a(n-25) +224*a(n-26) +48*a(n-27)
Comments