cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219466 Number of nX3 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 nX3 array.

This page as a plain text file.
%I A219466 #6 Jul 23 2025 00:29:37
%S A219466 10,68,673,5040,32229,185800,982456,4815782,22059734,95049799,
%T A219466 387398157,1500899485,5551333536,19675267097,67041131529,220243855894,
%U A219466 699365511947,2151361250171,6423848162633,18651881494908,52745972542258
%N A219466 Number of nX3 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 nX3 array.
%C A219466 Column 3 of A219471
%H A219466 R. H. Hardin, <a href="/A219466/b219466.txt">Table of n, a(n) for n = 1..210</a>
%F A219466 Empirical: a(n) = (1/523022617466601111760007224100074291200000000)*n^38 + (1/887984070401699680407482553650380800000000)*n^37 + (211/743986653579802434935998896301670400000000)*n^36 + (37/901802004339154466589089571274752000000)*n^35 + (23431/5904655980792082816952372192870400000000)*n^34 + (751/2566497818368045269611288985600000000)*n^33 + (18234521/994634563609361544032084085964800000000)*n^32 + (1202479/1177082323798060998854537379840000000)*n^31 + (3257916313/64169971845765260905295747481600000000)*n^30 + (15998577713/7129996871751695656143971942400000000)*n^29 + (34241128937/386354510291963804027505868800000000)*n^28 + (35548456637/11038700294056108686500167680000000)*n^27 + (10947288367751/101418058951640498557220290560000000)*n^26 + (237907312593869/73758588328465817132523847680000000)*n^25 + (71600877671657743/811344471613123988457762324480000000)*n^24 + (122707098285448223/54089631440874932563850821632000000)*n^23 + (3671970390070217/70641033314117766862602240000000)*n^22 + (1589133646897620433/1483461699596473104114647040000000)*n^21 + (264925397893974283417499/12429925580918848139376627548160000000)*n^20 + (3615125506802045691703/10064717069569917521762451456000000)*n^19 + (99834558409326312420878167/17990681761856227570150381977600000000)*n^18 + (8082599270771039606958097/88189616479687390049756774400000000)*n^17 + (40084616932042931244243721/48294313786495475503438233600000000)*n^16 + (82210406612645728578527/5375990402949403581087744000000)*n^15 + (77521233231877746972047550487/760635442137303739179152179200000000)*n^14 + (318314789653271743306315093267/190158860534325934794788044800000000)*n^13 - (158292888536859409403815888861/17287169139484175890435276800000000)*n^12 + (70868942634763610614565096827/128053104736919821410631680000000)*n^11 - (28239949688137362945250580263751/3978792897182865879544627200000000)*n^10 + (1250965614347251807731812019833/15788860703106610633113600000000)*n^9 - (23380069818927909043317980888257301/43969345581368059511449190400000000)*n^8 + (1533222352111813385357485885877/454604482851199953592320000000)*n^7 - (2368130301559082421877403072112469/97327978500424090064405760000000)*n^6 + (1758899229989365280437101191329/9040100174194737263616000000)*n^5 - (28115613360169956438589192637861/24718216762012467317944320000)*n^4 + (20392529937699678379400434687/4904408087700886372608000)*n^3 - (1495340558417657393233035721/177684955970610344256000)*n^2 + (3623955459298340527/485721041551200)*n - 732 for n>5
%e A219466 Some solutions for n=3
%e A219466 ..1..1..1....0..0..1....0..0..2....0..0..1....0..0..1....0..0..0....0..0..0
%e A219466 ..1..1..2....1..1..2....0..0..0....0..0..2....0..0..3....0..0..3....0..0..3
%e A219466 ..2..2..2....3..0..0....3..0..2....2..2..2....2..2..3....2..1..1....1..0..0
%K A219466 nonn
%O A219466 1,1
%A A219466 _R. H. Hardin_ Nov 20 2012