cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219473 Number of 3Xn arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 3Xn array.

This page as a plain text file.
%I A219473 #6 Jul 23 2025 00:30:15
%S A219473 20,82,673,4838,28159,143718,674954,2941342,11981143,45898940,
%T A219473 166443227,574474013,1895549798,6001932167,18298398284,53884690148,
%U A219473 153709998598,425853237243,1148567805278,3022012284611,7771027231688,19561835095982
%N A219473 Number of 3Xn arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 3Xn array.
%C A219473 Row 3 of A219471
%H A219473 R. H. Hardin, <a href="/A219473/b219473.txt">Table of n, a(n) for n = 1..210</a>
%F A219473 Empirical: a(n) = (1/523022617466601111760007224100074291200000000)*n^38 + (1/1448816114865931057506945219113779200000000)*n^37 + (1/21256761530851498141028539894333440000000)*n^36 - (757/247995551193267478311999632100556800000000)*n^35 + (4093/17713967942376248450857116578611200000000)*n^34 + (22907/520999057128713189731091664076800000000)*n^33 - (16139/7957076508874892352256672687718400000)*n^32 + (83764319/994634563609361544032084085964800000000)*n^31 + (549239/75761477976110107326205132800000000)*n^30 - (4678856243/7129996871751695656143971942400000000)*n^29 + (1496226007/25756967352797586935167057920000000)*n^28 - (653413544957/386354510291963804027505868800000000)*n^27 - (2975183387963/50709029475820249278610145280000000)*n^26 + (8806918400800111/811344471613123988457762324480000000)*n^25 - (11812904513950811/23181270617517828241650352128000000)*n^24 + (2067239075526283159/270448157204374662819254108160000000)*n^23 + (5489678448341620139/10384231897175311728802529280000000)*n^22 - (392659222400328327701/10384231897175311728802529280000000)*n^21 + (247423891090169051135981/225998646925797238897756864512000000)*n^20 - (1259752365431022645311581/654206609522044638914559344640000000)*n^19 - (2990270427949071173313147319/2570097394550889652878625996800000000)*n^18 + (1113341390309813951403492457/22047404119921847512439193600000000)*n^17 - (27170930857420612653952304299/28976588271897285302062940160000000)*n^16 - (271137930058645412943527770259/72441470679743213255157350400000000)*n^15 + (535219246244278434476862762431287/760635442137303739179152179200000000)*n^14 - (465297657459368886898913689163269/23769857566790741849348505600000000)*n^13 + (2384764688539478823620118815171/8980347604926844618407936000000)*n^12 - (1530415339594431692136387618041231/1920796571053797321159475200000000)*n^11 - (1852126074867674150037947762929883/51672635028348907526553600000000)*n^10 + (3777985100569138597814021070434363/6140112495652570801766400000000)*n^9 - (18055084608276660939474085529912310323/8793869116273611902289838080000000)*n^8 - (16027148120397118317452245023651668567/229007008236291976622131200000000)*n^7 + (146244839212731141496087089326560146347/111231975429056102930749440000000)*n^6 - (2021853520308780547462644486264447863/173027517334087271225610240000)*n^5 + (1473180274572635724831497308125294809/24718216762012467317944320000)*n^4 - (1282315843815358503748361492528617/8174013479501477287680000)*n^3 + (79251015920672692584467011831459/1243794691794272409792000)*n^2 + (221377469245024941019907/356195430470880)*n - 919752513 for n>16
%e A219473 Some solutions for n=3
%e A219473 ..0..0..2....1..1..2....0..0..0....0..0..0....0..0..0....0..0..0....0..0..2
%e A219473 ..0..0..1....1..1..2....0..0..2....0..1..3....0..0..2....0..2..2....1..1..1
%e A219473 ..0..0..1....3..2..3....3..2..2....3..0..0....2..2..2....3..2..2....3..1..1
%K A219473 nonn
%O A219473 1,1
%A A219473 _R. H. Hardin_ Nov 20 2012