A219499 Number of n X 5 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 n X 5 array.
5, 9, 26, 58, 107, 179, 281, 421, 608, 852, 1164, 1556, 2041, 2633, 3347, 4199, 5206, 6386, 7758, 9342, 11159, 13231, 15581, 18233, 21212, 24544, 28256, 32376, 36933, 41957, 47479, 53531, 60146, 67358, 75202, 83714, 92931, 102891, 113633, 125197
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1..0..0..0..0....0..0..0..0..0....1..1..1..0..0....0..0..0..0..0 ..1..0..0..0..0....1..0..0..0..0....1..1..1..1..0....1..0..0..0..0 ..1..1..0..0..0....1..1..1..1..1....1..1..1..1..1....1..1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A219502.
Formula
Empirical: a(n) = (1/24)*n^4 + (1/4)*n^3 + (35/24)*n^2 + (21/4)*n - 13 for n>2.
Conjectures from Colin Barker, Jul 26 2018: (Start)
G.f.: x*(5 - 16*x + 31*x^2 - 32*x^3 + 12*x^4 + 4*x^5 - 3*x^6) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>7.
(End)
Comments