cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219507 Pierce expansion of (5 - sqrt(21))/2.

This page as a plain text file.
%I A219507 #29 Feb 21 2025 06:18:31
%S A219507 4,6,109,111,1330669,1330671,2356194280407770989,2356194280407770991,
%T A219507 13080769480548649962914459850235688797656360638877986029,
%U A219507 13080769480548649962914459850235688797656360638877986031
%N A219507 Pierce expansion of (5 - sqrt(21))/2.
%C A219507 For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x.
%C A219507 The present sequence is the case x = 1/2*(5 - sqrt(21)).
%C A219507 _Jeffrey Shallit_ has shown that the Pierce expansion of the quadratic irrational (c - sqrt(c^2 - 4))/2 has the form [c(0) - 1, c(0) + 1, c(1) - 1, c(1) + 1, c(2) - 1, c(2) + 1, ...], where c(0) = c and c(n+1) = c(n)^3 - 3*c(n). This is the case c = 5. For other cases see A006276 (c = 3), A219506 (c = 4) and A006275 (essentially c = 6 apart from the initial term).
%C A219507 The Pierce expansion of ((c - sqrt(c^2 - 4))/2)^(3^n) is [c(n) - 1, c(n) + 1, c(n+1) - 1, c(n+1) + 1, c(n+2) - 1, c(n+2) + 1, ...].
%H A219507 G. C. Greubel, <a href="/A219507/b219507.txt">Table of n, a(n) for n = 0..13</a>
%H A219507 T. A. Pierce, <a href="http://www.jstor.org/stable/2299963">On an algorithm and its use in approximating roots of algebraic equations</a>, Amer. Math. Monthly, Vol. 36 No. 10, (1929) p.523-525.
%H A219507 Jeffrey Shallit, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/22-4/shallit1.pdf">Some predictable Pierce expansions</a>, Fib. Quart., 22 (1984), 332-335.
%H A219507 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PierceExpansion.html">Pierce Expansion</a>
%F A219507 a(2*n) = (1/2*(5 + sqrt(21)))^(3^n) + (1/2*(5 - sqrt(21)))^(3^n) - 1.
%F A219507 a(2*n+1) = (1/2*(5 + sqrt(21)))^(3^n) + (1/2*(5 - sqrt(21)))^(3^n) + 1.
%e A219507 Let x = 1/2*(5 - sqrt(21)). We have the alternating series expansions
%e A219507 x = 1/4 - 1/(4*6) + 1/(4*6*109) - 1/(4*6*109*111) + ...
%e A219507 x^3 = 1/109 - 1/(109*111) + 1/(109*111*1330669) - ...
%e A219507 x^9 = 1/1330669 - 1/(1330669*1330671) + ....
%t A219507 PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[(5 - Sqrt[21])/2 , 7!], 10] (* _G. C. Greubel_, Nov 14 2016 *)
%Y A219507 Cf. A006275, A006276, A219160, A219506, A219508.
%K A219507 nonn,easy
%O A219507 0,1
%A A219507 _Peter Bala_, Nov 22 2012