cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219546 Schenker primes.

Original entry on oeis.org

5, 13, 23, 31, 37, 41, 43, 47, 53, 59, 61, 71, 79, 101, 103, 107, 109, 127, 137, 149, 157, 163, 173, 179, 181, 191, 197, 199, 211, 223, 229, 241, 251, 257, 263, 271, 277, 283, 293, 311, 317, 337, 349, 353, 359, 367, 383, 397, 401, 409, 419, 421, 431, 439, 461
Offset: 1

Views

Author

Jonathan Sondow, Nov 22 2012

Keywords

Comments

Amdeberhan, Callan, and Moll (2012) call a prime p a Schenker prime if p divides A063170(r) (the r-th Schenker sum with n-th term) for some r < p.
For any non-Schenker prime p, Amdeberhan, Callan, and Moll (2012) give a formula for the p-adic valuation of any Schenker sum with n-th term.

Examples

			5 is a Schenker prime because 2 < 5 and 5 divides A063170(2) = 10.
17 is not a Schenker prime because 17 is not a factor of A063170(1) = 2, or of A063170(2) = 10, . . . , or of A063170(16) = 105224992014096760832.
		

Crossrefs

Cf. A063170.

Programs

  • Mathematica
    pmax = 300; A063170 = Table[n!*Sum[n^k/k!, {k, 0, n}], {n, 1, pmax}]; Rest[Select[Table[If[PrimeQ[j] && SelectFirst[Range[j], Divisible[A063170[[#]], j] &] != j, j, 0], {j, 1, pmax}], # != 0 &]] (* Vaclav Kotesovec, Nov 30 2017 *)

Extensions

More terms from Vaclav Kotesovec, Nov 30 2017