A219546 Schenker primes.
5, 13, 23, 31, 37, 41, 43, 47, 53, 59, 61, 71, 79, 101, 103, 107, 109, 127, 137, 149, 157, 163, 173, 179, 181, 191, 197, 199, 211, 223, 229, 241, 251, 257, 263, 271, 277, 283, 293, 311, 317, 337, 349, 353, 359, 367, 383, 397, 401, 409, 419, 421, 431, 439, 461
Offset: 1
Keywords
Examples
5 is a Schenker prime because 2 < 5 and 5 divides A063170(2) = 10. 17 is not a Schenker prime because 17 is not a factor of A063170(1) = 2, or of A063170(2) = 10, . . . , or of A063170(16) = 105224992014096760832.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..783
- T. Amdeberhan, D. Callan, and V. Moll, p-adic analysis and combinatorics of truncated exponential sums, preprint, 2012.
- T. Amdeberhan, D. Callan and V. Moll, Valuations and combinatorics of truncated exponential sums, INTEGERS 13 (2013), #A21.
Crossrefs
Cf. A063170.
Programs
-
Mathematica
pmax = 300; A063170 = Table[n!*Sum[n^k/k!, {k, 0, n}], {n, 1, pmax}]; Rest[Select[Table[If[PrimeQ[j] && SelectFirst[Range[j], Divisible[A063170[[#]], j] &] != j, j, 0], {j, 1, pmax}], # != 0 &]] (* Vaclav Kotesovec, Nov 30 2017 *)
Extensions
More terms from Vaclav Kotesovec, Nov 30 2017
Comments